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ABSTRACT 
 
Ozone is a proven technology for the oxidation of variety of organic contaminants in 
water.  Advanced oxidation processes using hydroxyl radical chemistry also have been 
shown to oxidize a great diversity of contaminants.  This study was initiated to determine 
the effectiveness of ozone and ozone/peroxide AOP for disinfection of tertiary treated 
wastewater.  A desirable ancillary benefit of ozone processes is the oxidation of trace 
contaminants at disinfection doses.  Ozone and ozone/peroxide were applied to tertiary 
treated wastewater during two seasons to determine the efficacy of disinfection and 
simultaneous contaminant oxidation.  Results clearly demonstrate that ozone and ozone 
AOP are highly effective for the removal of a great number of organic contaminants.  
Moreover, estrogenicity as determined by an in vitro bioassay was also destroyed by 
ozone and advanced oxidation.  Contaminant destruction was not significantly enhanced 
by the addition of peroxide for AOP as compared to ozone alone.  Some 
microcontaminants were found to be resilient to oxidation.  The contaminants include: 
TCEP (a flame-retardant), meprobamate (an anti-anxiety pharmaceutical), musk ketone 
(a synthetic fragrance), and iopromide (an x-ray contrast media).   
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INTRODUCTION 
 
The Clark County Water Reclamation District (CCWRD) has been serving the Las Vegas 
Valley since 1956.  The Las Vegas valley has been experiencing phenomenal growth, 
with a growth rate of the past two years of around 6 percent.  As a result, the flow 
increases at CCWRD have averaged about 5 mgd per year.  CCWRD is now planning to 
expand its treatment capacity from 110 MGD to 150 MGD.  In 1996, the US Geological 
Survey (USGS) reported that biomarkers for estrogenicity were elevated in fish from the 
Las Vegas Bay of Lake Mead (Bevans, Goodbred et al. 1996).   By the end of 1997, 
research funded by the Southern Nevada Water Authority (SNWA) determined that trace 
estrogenic natural and synthetic steroids and alkylphenols were detectable in the Las 
Vegas Wash and Las Vegas Bay (Renner 1998; Snyder, Keith et al. 1999; Snyder 2000; 
Snyder, Snyder et al. 2000).  Although estrogenic alkylphenols from surfactant 
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degradation also were present in the Las Vegas Bay (Snyder, Keith et al. 2001), an 
estrogencitity focused toxicity identification and evaluation (TIE) project demonstrated 
that natural and synthetic steroids were, by far, the most responsible compounds for 
observed in vitro estrogenicity (Snyder, Villeneuve et al. 2001).  Additionally, the SNWA 
team also discovered a series of pharmaceuticals at ng/L concentrations (Snyder, Kelly et 
al. 2001; Vanderford, Pearson et al. 2003).  Following the SNWA studies, the USGS also 
determined that trace pharmaceuticals were present in Lake Mead (Boyd and Furlong 
2002).  Table 1 shows the pharmaceuticals reported by USGS in Lake Mead.  The 
SNWA also completed an endocrine disruptor evaluation of “laboratory” fish caged in 
various locations within Lake Mead and found only minor differences between fish caged 
in the Las Vegas Bay and control sites with the lake (Snyder, Snyder et al. 2004).   
 
The detection of steroids and pharmaceuticals at ng/L levels is not unique to Lake Mead.  
Steroids and pharmaceuticals in wastewater effluents and surface waters were first 
discovered in the US in the 1960s and 1970s (Stumm-Zollinger and Fair 1965; Tabak and 
Bunch 1970; Garrison, Pope et al. 1975; Hignite and Azarnoff 1977).  Later these trace 
contaminants were determined to be ubiquitous contaminants of wastewater effluents 
globally (Aherne, English et al. 1985; Eckel, Ross et al. 1993; Heberer and Stan 1996; 
Desbrow, Routledge et al. 1998; Halling-Sorensen, Nielsen et al. 1998; Ternes, Hirsch et 
al. 1998; Daughton and Ternes 1999; Snyder, Keith et al. 1999; Ternes, Stumpf et al. 
1999; Metcalfe, Koenig et al. 2000).  Treatment of these chemicals in wastewater effluent 
has become of great interest.  Westerhoff et al. showed that ozone was much more 
effective for the oxidation of a diverse group of steroids, pharmaceuticals, and personal 
care products than was hypochlorite (Westerhoff, Yoon et al. 2005).  Several reports have 
shown that ozone is effective for the oxidation of many microcontaminants (Zwiener and 
Frimmel 2000; Ternes, Meisenheimer et al. 2002; Balcioglu and Otker 2003; Huber, 
Canonica et al. 2003; Ternes, Stüber et al. 2003; Huber, Göbel et al. 2005; McDowell, 
Huber et al. 2005). 
 
Expanding the CCWRD wastewater treatment plant provided an opportunity to utilize 
“state of the art technology” to address the EDCs and pharmaceuticals in the wastewater.   
In the plant expansion, ozone could provide efficient disinfection with simultaneous 
contaminant destruction.  Since previous reports have indicated that the Las Vegas Wash 
may impact fish in Lake Mead, CCWRD was keenly interested in the removal of 
estrogenic chemicals.   
 
Table 1.  2001-2002 USGS Monitoring of Lake Mead.  Adapted from USGS Report 

02-385, Boyd & Furlong – 2002. 
 

Acetaminophen Analgesic; anti-inflammatory 
Amoxicillin Antibiotic 
Azithromycin Antibiotic 
Caffeine Stimulant 
Carbamazepine Antiepileptic; analgesic 
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Cephalexin Antibiotic 
Cimetidine Antiulcerant; stomach-acid reducer 
Clarithromycin Antibiotic 
Codeine Narcotic; analgesic 
Cotinine Metabolite of nicotine 
Dehydronifedipine Metabolite of Procardia (vasodilator) 
Digoxigenin Metabolite of Digoxin (antianginal) 
Digoxin Antianginal (cardiac stimulant) 
Diltiazem Antianginal 
1,7-dimethylxanthine Metabolite of caffeine 
Diphenhydramine Antihistamine 
Enalaprilat Antihypertensive 
Erythromycin Antibiotic 
Fluoxetine Antidepressant 
Furosemide Edema medication; diuretic 
Gemfibrozil Cholesterol regulator 
Ibuprofen Analgesic; anti-inflammatory 
Lisinopril Antihypertensive 
Metformin Antiglycemic 
Miconazole Antifungal 
Paroxetine metabolite Metabolite of Paroxetine (antianxiety) 
Ranitidine Antiulcerant; antacid 
Salbutamol (albuterol) Anti-inflammatory; bronchodilator 
Sulfamethoxazole Antibiotic 
Thiabendazole Anthelmintic (intestinal wormer) 
Trimethoprim Antibiotic 
Urobilin Metabolite of human excrement 
Warfarin Anticoagulant 

 
METHODS 
 
Target EDCs and pharmaceuticals were chosen in conjunction with a previous SNWA 
study funding by AwwaRF (Project #2758).  The analytical method used to identify and 
quantify target analytes was described previously (Vanderford, Pearson et al. 2003).  
Briefly, 1-L samples were preserved using sodium azide and refrigerated until sample 
extraction.  Stable isotope surrogates were added to the samples before extraction using 
automated solid-phase extraction (ASPE).  Stable isotope internal standards were added 
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to the resulting extraction before analysis by liquid chromatography with tandem mass 
spectrometry (LC-MS/MS) using both electrospray ionization (ESI) and atmospheric 
pressure chemical ionization (APCI).   
 
An in vitro bioassay using human breast cancer cells was used to evaluate the 
estrogenicity of extracts resulting from aqueous samples (Zacharewski 1997; Snyder, 
Snyder et al. 2000).  Cell cultures as dosed with a small amount of extract.  This cell line 
is responses to estrogen agonists, which induce cellular replication.  Estrogenicity is 
determined by comparing the cell number of exposed cells to that of control cells.  Units 
are provide as estrogen equivalent units (EEQs) as ng estrogen per mL of extract, which 
equates roughly to ng/L in the water sample since 1-L samples were used throughout this 
study.   
 
Bench scale tests were performed to provide estimates of ozone demand and decay rates 
to be used in subsequent pilot plant testing.  A sample of purified water was placed inside 
a water-jacketed flask and chilled to 2°C.  Once chilled, gaseous ozone was diffused into 
the water using an ozone generator producing 11 percent ozone (model CFS-1A, Ozonia 
North America Inc., Elmwood Park, NJ USA).  Ozone stock solution concentrations and 
dissolved ozone residuals were measured according to Standard Methods 4500-O3 
(Bader and Hoigne 1982; APHA, AWWA et al. 1998).  Ozone dosages of 2, 5, and 10 
mg/L were achieved by injecting an aliquot of ozone stock solution into a 1-L amber 
glass dispenser containing the tertiary treated wastewater at room temperature (20°C).  
Dissolved ozone residual was measured until it decayed to less than 0.05 mg/L or until a 
contact time of 24 minutes was achieved.   
 
A 55-gallon drum filled with tertiary treated wastewater provided the influent to a 1 
L/min bench-top pilot plant (BTPP).  The BTPP consists of a continuous-flow ozone 
contactor constructed using inert materials such as glass, fluorocarbon polymers, and 
stainless steel.  A peristaltic pump was used to control the flow rate at 1L/min.  The 
ozone contactor consisted of 12 glass chambers each providing 2 minutes of contact time 
for a total of 24 minutes.  The bottom of each glass chamber was equipped with a sample 
port.  Ozone feed gas was produced from oxygen with a laboratory-scale ozone generator 
(model LAB2B, Ozonia North America Inc., Elmwood Park, NJ USA).  Ozone was 
added in the first contactor chamber with counter-current flow through a glass-fritted 
diffuser with bubble size of 0.1 um.  A mass flow controller calibrated for oxygen gas 
(model AFC2600D, Aalborg Instruments and Controls, Inc., Orangeburg, NY USA) and 
a feed gas concentration analyzer (model H1-S, IN USA Inc., Needham, MA USA) were 
used to calculate and control the ozone dosage.  The off gas was collected from the top of 
each cell into a central manifold and sent to an ozone destruction unit containing 
manganese dioxide destruct catalyst.  The process effluent was discharged to the sanitary 
sewer. 
 
Pilot plant testing was conducted during June 2005 and January 2006 to capture seasonal 
changes in TOC, which could impact ozone demand and decay rates.  During the June 
2005 pilot testing, three O3 dosages of 4.9, 7.3, 8.7 mg/L were evaluated.  During the 
January 2006 pilot study, ozone dosages of 2.1, 3.6, and 7.0 mg/L were selected based 
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upon bench-scale demand/decay data.  During each test, the tertiary wastewater was 
maintained at room temperature (20°C).  Dissolved O3 measurements were collected 
from each chamber to examine ozone demand and decay rates.  Water quality samples 
were collected for assimilable organic carbon (AOC), carboxylic acids, aldehydes, 
bromate, total coliforms and fecal coliforms.   
 
RESULTS 
 
Bench top batch reactors were used to determine the ozone demand and decay.  The 
demand/decay curves for June 2005 are shown in Figure 1.   Contaminant removal results 
for June 2005 and January 2006 are provided in Tables 2 and 3, respectively.  
Estrogenicity as determined by the in vitro bioassay is shown in Table 4. 
 
Figure 1. Ozone Demand/Decay – June 2005 
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Compound Class
Raw 

Influent
Filtered 

Secondary
4.9 mg O3/L 7.3 mg O3/L 8.7 mg O3/L

Androstenedione Hormone 684 <1.0 <1.0 <1.0 <1.0
Estradiol Hormone 49 <1.0 <1.0 <1.0 <1.0

Estriol Hormone 240 <5.0 <5.0 <5.0 <5.0
Estrone Hormone <25 <1.0 <1.0 1.1 <1.0

Ethynylestradiol Hormone <25 <1.0 <1.0 <1.0 <1.0
Progesterone Hormone 103 <1.0 <1.0 <1.0 <1.0
Testosterone Hormone 110 <1.0 <1.0 <1.0 <1.0

Acetaminophen Pharmaceutical 43750 <1.0 <1.0 <1.0 <1.0
Carbamazepine Pharmaceutical 99 210 <1.0 <1.0 <1.0

Diazepam Pharmaceutical <25 <1.0 <1.0 <1.0 <1.0
Diclofenac Pharmaceutical 28 54 <1.0 <1.0 <1.0

Dilantin Pharmaceutical 94 154 17 3.4 <1.0
Erythromycin Pharmaceutical 285 133 <1.0 <1.0 <1.0

Fluoxetine Pharmaceutical <25 18 <1.0 <1.0 <1.0
Gemfibrozil Pharmaceutical 1105 <1.0 <1.0 <1.0 <1.0

Hydrocodone Pharmaceutical 218 240 <1.0 <1.0 <1.0
Ibuprofen Pharmaceutical 11950 19 1.1 <1.0 <1.0
Iopromide Pharmaceutical 37 22 6.2 2.0 <1.0

Meprobamate Pharmaceutical 739 332 140 63 42
Naproxen Pharmaceutical 13200 13 <1.0 <1.0 <1.0

Pentoxifylline Pharmaceutical 46 <1.0 <1.0 <1.0 <1.0
Sulfamethoxazole Pharmaceutical 590 841 3.1 <1.0 <1.0

Trimethoprim Pharmaceutical 319 35 <1.0 <1.0 <1.0
Triclosan Antimicrobial 1590 85 112 50 72
Caffeine Stimulant 97800 51 <10 <10 <10
TCEP Flame Retardant 453 373 427 352 334
DEET Personal Care 413 188 39 10 3.4

Oxybenzone Personal Care 2925 6 8.2 <1.0 1.5
Atrazine Pesticide 251 <1.0 <1.0 <1.0 <1.0

Table 2.  Ozone Oxidation – June 2005 
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Table 3. Ozone Oxidation – January 2006 
 

 

Compound Class
Filtered 

Secondary
2.1 mg O3/L 3.6 mg O3/L 7.0 mg O3/L

Androstenedione Hormone 2 <1.0 <1.0 <1.0
Estradiol Hormone <1.0 <1.0 <1.0 <1.0

Estriol Hormone 6 7.7 9.3 <5.0
Estrone Hormone 5 6.6 <1.0 1.0

Ethynylestradiol Hormone <1.0 <1.0 <1.0 <1.0
Progesterone Hormone <1.0 <1.0 <1.0 <1.0
Testosterone Hormone 2 <1.0 <1.0 <1.0

Acetaminophen Pharmaceutical <1.0 <1.0 <1.0 <1.0
Carbamazepine Pharmaceutical 139 <1.0 <1.0 <1.0

Diazepam Pharmaceutical 1 <1.0 <1.0 <1.0
Diclofenac Pharmaceutical 73 <1.0 <1.0 <1.0

Dilantin Pharmaceutical 143 81 40 1.9
Erythromycin-H2O Pharmaceutical 162 2.6 <1.0 <1.0

Fluoxetine Pharmaceutical 14 <1.0 <1.0 <1.0
Gemfibrozil Pharmaceutical 16 <1.0 <1.0 <1.0

Hydrocodone Pharmaceutical 199 1.8 <1.0 <1.0
Ibuprofen Pharmaceutical 6 12 <1.0 <1.0
Iopromide Pharmaceutical 139 119 83 25

Meprobamate Pharmaceutical 796 552 472 137
Naproxen Pharmaceutical 25 <1.0 <1.0 <1.0

Pentoxifylline Pharmaceutical <1.0 <1.0 <1.0 <1.0
Sulfamethoxazole Pharmaceutical 669 50 3.2 <1.0

Trimethoprim Pharmaceutical 191 <1.0 <1.0 <1.0
Triclosan Antimicrobial 35 1.7 1.4 <1.0
Caffeine Stiumlant 21 14 <10 <10
TCEP Flame Retardant 235 192 269 221
DEET Personal Care 133 77 44 4.9

Oxybenzone Personal Care <1.0 <1.0 <1.0 <1.0
Atrazine Pesticide <1.0 <1.0 <1.0 <1.0
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Table 4. Estrogenicity Results 

 
 
 
DISCUSSION 
 
Ozone was determined to be effective for the oxidation of the vast number of 
contaminants present in CCWRD filtered secondary effluent.  Ozone demand and decay 
was as expected considering the TOC present in this water.  Date from the June 2005 
indicate that some compounds (i.e., carbamazepine & diclofenac) were of greater 
concentration in the secondary effluent than were present in the raw sewage.  While these 
results are contra intuitive, this may be the result of deviations in influent concentration 
over time or the result of deconjugation of metabolites to the reform the active 
pharmaceutical.  More research is required to determine the factors causing this 
observation.  In the January 2006 experiment, the concentration of estriol appears to rise 
during ozonation, which contradicts all previous finding.  Estriol has poorer 
chromatography and quantitation may have suffered due to the challenging matrix at 
concentrations approaching the analytical detection limit (5 ng/L).  It is unlikely that 
estriol concentrations increased during ozonation.  The rise in estrone concentration is not 
significant within the analytical variability of the method.  Estrogenicity, as measured by 
cellular bioassay, was greatly reduced by ozonation.  It is interesting to note that 
estrogenicity and steroid levels at CCWRD are quite small.  These data suggest that 
CCWRD has good removal of steroids and estrogenicity in general, even without the 
addition of ozone oxidation.   
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Raw 
Influent

Filtered 
Secondary Low Medium High

June-05 54 0.66 <0.06 <0.06 <0.06
January-06 NM 1.00 0.82 0.10 0.08

NM=Not Measured
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