From JPMitchell@pbsj.com Tue Oct 1 22:39:14 2002 From: JPMitchell@pbsj.com (Mitchell, James) Date: Tue, 1 Oct 2002 16:39:14 -0500 Subject: shrug-l: 2002 SHRUG GIS Workshop - Volunteer Request Message-ID: <3F08A21F8121D611A62B00065B3BB283470029@tallahasseembx> This message is in MIME format. Since your mail reader does not understand this format, some or all of this message may not be legible. ------_=_NextPart_000_01C26992.616F5C68 Content-Type: multipart/alternative; boundary="----_=_NextPart_001_01C26992.616F5C68" ------_=_NextPart_001_01C26992.616F5C68 Content-Type: text/plain; charset="iso-8859-1" As you know the Seven Hills Regional Usergroup for G.I.S. is sponsoring this year's SHRUG GIS Workshop. The conference dates have been "locked in", and the guest speakers have been scheduled. ESRI is offering software training at a discounted rate, and we have exhibitors and sponsors representing the many disciplines of GIS. This is going to be a very exciting and informative workshop and is coming up right around the corner from November 12th to the 15th. Although I am sure that you have all marked your calendars to attend, there are still a few loose ends to tie up that may require your assistance in making this year's conference a complete success. We are looking for volunteers to help ensure that the event runs smoothly. Tasks may include registering guests, introducing/moderating the speakers at presentations, or they may be as simple as being in lobby areas to direct attendees and answer questions. Volunteers will be crucial to the success of the conference. This opportunity will put you face to face with a variety of people within the GIS field and the possibility to share interests and experiences. If you would like to get involved, meet people, and be part of the team, let me know. Volunteer commitments are very flexible, and will work around your availability and interests. You could volunteer for as little as 1 hour, or as much as every hour of the conference, but we would hope for something in between! Please call me if you have any questions, and if you are ready to join the team, send me an e-mail with your contact information (including e-mail and best telephone number to reach you). Also, let me know your availability during the conference and if you have a specific area where you would like to be placed. I'll add you to the list, and create a tentative schedule for all the volunteers. About a week before the conference we'll have a "volunteer meeting" to discuss the further details. Thanks for your support with this event, and I hope to hear from you soon. Jim James P. Mitchell PBSJ, Inc. 1901 Commonwealth LN Tallahassee FL 32303 Phone: (850) 575-1800 ext. 7863 Fax: (850) 575-1513 jpmitchell@pbsj.com ------_=_NextPart_001_01C26992.616F5C68 Content-Type: text/html; charset="iso-8859-1" Content-Transfer-Encoding: quoted-printable

As you know the = Seven Hills Regional Usergroup for = G.I.S.  is sponsoring this year’s SHRUG GIS Workshop. The conference dates = have been “locked in”, and the guest speakers have been scheduled. = ESRI is offering software training at a discounted rate, and we have exhibitors and = sponsors representing the many disciplines of GIS.  This is going to be a very exciting and informative workshop and = is coming up right around the corner from November 12th to the = 15th.  =

 =

Although I am sure that you have = all marked your calendars to attend, there are still a few loose ends to = tie up that may require your assistance in making this year’s conference = a complete success.  We are looking = for volunteers to help ensure that the event runs smoothly. Tasks may = include registering guests, introducing/moderating the speakers at = presentations, or they may be as simple as being in lobby areas to direct attendees and answer = questions. Volunteers will be crucial to the success of the conference. This = opportunity will put you face to face with a variety of people within the GIS field = and the possibility to share interests and experiences.  If you would like to get involved, meet people, and = be part of the team, let me know.  = =

 =

Volunteer commitments are very = flexible, and will work around your availability and interests.  You could volunteer for as little as 1 hour, or as = much as every hour of the conference, but we would hope for something in = between!  =

 =

Please call me if you have any = questions, and if you are ready to join the team, send me an e-mail with your = contact information (including e-mail and best telephone number to reach = you).  Also, let me know your = availability during the conference and if you have a specific area where you would = like to be placed.  I’ll = add you to the list, and create a tentative schedule for all the volunteers.  About a week before the = conference we’ll have a “volunteer meeting” to discuss the = further details.=

 =

Thanks for your support with = this event, and I hope to hear from you soon.=

 =

Jim=

 =

James P. = Mitchell=

PBSJ, = Inc.

1901 Commonwealth LN

Tallahassee FL 32303

Phone:   (850) = 575-1800 ext. 7863

Fax:        (850) = 575-1513

jpmitchell@pbsj.com

 

=

 =

------_=_NextPart_001_01C26992.616F5C68-- ------_=_NextPart_000_01C26992.616F5C68 Content-Type: image/jpeg; name="image001.jpg" Content-Transfer-Encoding: base64 Content-Disposition: attachment; filename="image001.jpg" Content-ID: /9j/4AAQSkZJRgABAQEBLAEsAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0a HBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIy MjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCABWADYDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDs/G3i nxHY+ObDQNCu7C3WewNy7XUJkO4ORgYI7Yqj/a3xGH/Ma0T/AMAH/wDiqz/iVaW118WNLjuLeKZD o7krIgYE+YfWqiaVYxDENv5I/wCmLtH/AOgkVwYjN8PhKns6sG+t0z5bOc0r4XEezpzsrL7KffzN r+1/iL/0G9D/APAF/wD4qj+2PiL/ANBvQ/8AwBf/AOKrIRNQtpA9pqcpT+KG7XzkP0bIcfmatr4h S2XOq25s1zgTK3mxH6sACv8AwIAe9ehg8xyzFPli7Ps9Dx5Z1mf/AC6mpfJX+7/K5c/tj4i/9BvQ /wDwBf8A+KoGr/EUkD+29D/8AX/+Kq8pDqHUhkPIYcg/jUMl7aW5/f3UEWOu+UCvYeDoJX/U5Y8S Zm3ZNf8AgJ1Pw+1nUNe8JRX2qvC95588LtCmxTslZBgfRaKz/hNLHN4GVopFdRfXfKnPWdyP0IP4 0V47Wp+kwbcUzjviVdwW3xZ0p5nKKNIYZKnGTIarR6rp8p+S+tifTzVB/LNaHxBJHxc0nn/mDv8A +jTULokg2yKrj0YZ/nXyOd8n1n3k9l/Wx8RxE6f1xcyey6rz8itdajbWiqXcu7fcjiG93+ijk/yq I/2ldYClLCIjnpLKf/ZR/wCPUjaLYqS9tGbKU9ZLQ+UT9QOGHsQaDJqNomZUF8g6tEoSTH+5nDfg R9K86HIkvZb+f6dDyYezSTo6y8/06ffqNt9B06CMp5BlDMWImYuCT/sn5R+Aq5DZWkJURWlvHg/w xKP6VXGs6aVybyJGzgxudrqfQofmH5Uf2vb5GyC9m9PKtJCD+JGP1ol9aqO0r/iS44ubfNzfid/8 Jh/xQUX/AF+3f/pQ9FRfCGUy+AYm8uRP9Nu+HGCczuf64+oNFfdx+FH6fD4Uch8SriSD4r6U6Wk0 +NIYbYyuT+8PPJH+TVNNUBXMthqEPs0G/wD9ALVqfEL/AJK5pP8A2B3/APRpqOvls6cVifeV9F38 z4niKcFi7SjfRfr8jJbXbeaVbewQ3NywztJ8sJ/vFuR9ACfapn0+a8AF9dPtGMw2xMaH6nO4/mB7 VZurS2vYvKuoI5k7B1zj3HofeqcsNxp0PmwXqGJR/q76TK/hJ1H47q82MoOypaPz/wA/+B8zyKco Oyo+7Lz1/Hp9y9S9DbQWy7beCKIekaBf5VKPvD61lQa2txFvjsL52BwQkWVP0ckKR+NS/a9Rcjyd KIHrPcIv6LuqJUKvN7+/m0Zzw1bm9/fza/VnoHwm/wCRCi/6/bv/ANKJKKj+ELSnwDF5yIjfbbvh W3f8t3z2HfP6UV9/F+6j9Rh8KOP+Jf2wfFjS/spt/M/shsCXcBjzDnJH+FUkn1ZM+dYW0h9YLn+j KK1fiH/yVzSv+wO//o01FXyudTUcTZxT0R8RxFVUcZZxT0Xfz8zHu9Wuo3VDbNYxYy9zdIXRfYBC Rn3YgVZh02zkMVzI32115jmmIcD3UD5R9QKv1ROlQRuZLQvZuf8AnhgIfqn3T+h968xVY2tH3X/X zPHVeDjyx9x+X6vf8/Qvkk9aB94fWsxb+4skA1WNFGf+PmAHyuvG4HlPTnI960x1FYzpyhvt3Oep SlDV7d+h1/wm/wCRDi/6/bv/ANKHopfhN/yIcX/X7d/+lElFfocPhR+r0/gQ7xf4K0bXNTg1rUtW vNOmgh+zLLDcJCu0sTglh1JP6VlR/DLQ5YIpo/FmtPFK2yN1v4yrtkjAO3BOQePatLx3p9pdX2kX E19oqXFsJ2hsNZ/497ncEVm6/eQdDhvvEcZyOWuL2O+0ews9LtNI065tPFFrCZtOHnWbzeWDvUDZ nGQCuQQQRnvSlShJ3kk/kTOjTm7yim/Q2X+F+ixeb5nirXE8lQ8u6+QbFOcFvl4HB5PoaZB8NdCu oHmt/FutTRJne8d/GyrgZ5IXA45rM8Qw6jBZ/EhNUvLe7uP7Dtf3lvbGBdv+k4G0u/Pvn8Ks2WiX NtqPiu3n0+y0/UJ9GaG3sdLh8u3vE2sfNXnMjqzbD8o27h1Dip9hS/lX3EfVaH8i+5F4/CzRyIgf E+u/v/8AVj7an7zgnj5eeATx2qkvwu8P6Zcx2Y8XavbBl/d2rX0atkt1AK556YA61a0zUrDUpfhv DYXkFzLCjSSpBIHMaiydCWA+6AzKvOOSBXPafceH7PwK15faPoWr+IFedtaj1W6hiuBMC5k52MTy CFAA+XGDR7Gla3KvuQ/q9G1uVfcj1Pwz4etfC+iRaTZSzywxu8gedgzkuxY5IA7k9qKsaFPFc6Dp 1xBAsEMtrE8cKtkRqUBCg98DiitTaxLe6XY6nGsd/Z213GrblW4iWQA4xkAjg8n86cunWiW8EC2s AhtyDCgiULER0KjGBjtiiigAl060n8/zrW3k+0IIp98St5qDOFbI5A3Hg+p9aWSxtprmC5lt4XuL fd5MrxgtHuGG2nquRwcdaKKAI7XSNOsbmW5tLC0t55s+bLFAqM+Tk5IGTzzzTLnRNMvLxLy602zn ukxtnlgVnXByMMRkYPNFFAF4AiiiigD/2Q== ------_=_NextPart_000_01C26992.616F5C68-- From PenceP@talgov.com Thu Oct 3 19:36:54 2002 From: PenceP@talgov.com (Pence, Patrick) Date: Thu, 3 Oct 2002 14:36:54 -0400 Subject: shrug-l: 2002 SHRUG GIS Conference - Nov 12-15 **LAST CALL FOR PRESENTATI ONS** Message-ID: <614E33D8AF10704AAB61E151813351C80289AEF4@cotexchange3.ci.tlh.fl.us> This message is in MIME format. Since your mail reader does not understand this format, some or all of this message may not be legible. ------_=_NextPart_000_01C26B0B.D9041672 Content-Type: multipart/alternative; boundary="----_=_NextPart_001_01C26B0B.D9041672" ------_=_NextPart_001_01C26B0B.D9041672 Content-Type: text/plain; charset="iso-8859-1" We are now within 45 days of the 2002 Seven Hills Regional Usergroup for GIS (SHRUG) Conference! If you have not made arrangements to attend, or if you have not checked out the informational updates to the SHRUG website, now is the time to do so! The deadline for presentation and poster submittals has been extended to October 15th, so don't be left out! Help make this GIS conference a success during its inaugural year by taking an active part. We have received many presentation topics, but can still use more. October 15th is the deadline for having your presentation printed in the Conference Agenda, but we will still accept abstracts beyond that date, schedule permitting. Noticeably absent from the current presentations are topics from the following agencies: FDEP FSU FREAC FGDL FDOT FDHR NPS Tall Timbers We know you have exciting GIS work that can be shown to the community, so volunteer to join us. Listed at the bottom of the page are the current presentation tracks. Remember, the price of registration increases from the $50 Early Registration rate to the standard Conference rate of $75 after October 15th. Save money and be eligible for "early-bird" prizes by registering now! As we approach the conference, updates to the SHRUG website (< http://www.shrug-gis.info >) will help you by providing additional registration information about the Conference and pre-Conference GIS Training Sessions (Nov 12-13). Plan the week of November 12-15th on your calendar around attending this exciting gathering of GIS professionals. ** We are also still accepting vendors for our Exhibit Hall, so please feel free to extend an invitation to any GIS data or industry providers who you think might be interested in having a booth at our conference. Visit the website for details.** Please pass this message along to members of your GIS workgroup who would benefit from attending this conference. We hope to see you there! Sincerely, The 2002 SHRUG Workshop Planning Committee Current Presentation Tracks Digital Terrain Modeling Mapping Water Quality GIS Data Access Communities Online with ArcIMS Remote Sensing Routing Applications for Community Services Local Government GIS State & Federal Government GIS Enterprise GIS Photogrammetry GIS Data Models GIS Data Standards GIS Vendors Transportation Applications ------_=_NextPart_001_01C26B0B.D9041672 Content-Type: text/html; charset="iso-8859-1"

           


We are now within 45 days of the 2002 Seven Hills Regional Usergroup for GIS (SHRUG) Conference!

If you have not made arrangements to attend, or if you have not checked out the informational updates to the SHRUG website, now is the time to do so!

The deadline for presentation and poster submittals has been extended to October 15th, so don't be left out! Help make this GIS conference a success during its inaugural year by taking an active part.

We have received many presentation topics, but can still use more.  October 15th is the deadline for having your presentation printed in the Conference Agenda, but we will still accept abstracts beyond that date, schedule permitting.  Noticeably absent from the current presentations are topics from the following agencies:

    FDEP    FSU    FREAC    FGDL    FDOT    FDHR    NPS    Tall Timbers

We know you have exciting GIS work that can be shown to the community, so volunteer to join us.  Listed at the bottom of the page are the current presentation tracks.

Remember, the price of registration increases from the $50 Early Registration rate to the standard Conference rate of $75 after October 15th. Save money and be eligible for "early-bird" prizes by registering now!

As we approach the conference, updates to the SHRUG website (<http://www.shrug-gis.info>) will help you by providing additional registration information about the Conference and pre-Conference GIS Training Sessions (Nov 12-13).

Plan the week of November 12-15th on your calendar around attending this exciting gathering of GIS professionals.

** We are also still accepting vendors for our Exhibit Hall, so please feel free to extend an invitation to any GIS data or industry providers who you think might be interested in having a booth at our conference. Visit the website for details.**

Please pass this message along to members of your GIS workgroup who would benefit from attending this conference. We hope to see you there!

Sincerely,

The 2002 SHRUG Workshop Planning Committee

Current Presentation Tracks
 
Digital Terrain Modeling        Mapping Water Quality
GIS Data Access                Communities Online with ArcIMS
Remote Sensing                 Routing Applications for Community Services
Local Government GIS        State & Federal Government GIS
Enterprise GIS                    Photogrammetry
GIS Data Models                GIS Data Standards
GIS Vendors                       Transportation Applications
 


------_=_NextPart_001_01C26B0B.D9041672-- ------_=_NextPart_000_01C26B0B.D9041672 Content-Type: image/jpeg; name="WorkshopLogo.jpg" Content-Transfer-Encoding: base64 Content-Disposition: attachment; filename="WorkshopLogo.jpg" Content-ID: <720332618@03102002-1b5d> /9j/4AAQSkZJRgABAQEBLAEsAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0a HBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIy MjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAIkAioDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD0n7Zc /wDPxN/32aPtlz/z8Tf99moaK/JfrNb+d/ez3/Zw7GP4s8ZL4U0V76eaV5WOyCLzCDI/+Hqa8G1n 4neLtbZhLrVzbwtkeTayNEmDnIODkjnuTXR/G6aZte02BgfIW2Loc8bi5Dfoq15Z2r9AyPCqOGjW k7ylrq729DysTO83FbIsXF3c3kglubiWdwNoaVyxx6ZP1NW4df1m3ZGh1a+jaMgoUuXBUjpjB4xX ofgD4baV4g0OPVtQupnEjOogiIULgkfMcEk9+Mdq6vUPg/4ZuwTa/arJuwjl3qPwfJ/Wrr57g6NZ 0Z3utG7aExwtSUeZGt8Mte1PVPBFtNeX11POkkiNLLOzu/zEjJJz3x+Arn/jTqV/b6PphhvrmMmd gSkzDPy/Wun8F+GJPCWjS6a179rU3DSxvsKYUqoxjJxyCeveuM+N8iDTNIiJ/eNLIwGOoCgH+Yr5 7CYj2ubp05NxbbW+1m9jsqQ5aGq1PI/7d1j/AKCt9/4EP/jXrPwTvdQurjWZ59QupfLWFArzMR8x c56/7NeLd69s+B8QGk6rNswzTopb1AUnH6n86+jzuo6eBm4uz0/NHHhleqrnrn2u5/5+Jv8Avs1k +Kb66TwjrTLczBhYzkESHIPltWhXPeO5Hi8DawyMVJt2XI9DwR+RNfB4OvVliIJyerXV9z1Jwgot 2Pm/+3dYz/yFb7/wIf8AxrqvhzqWqXvj3SoX1S82+Y7kGdiDtRmxjPfFcJ3ru/hJEJPH9q7E5iil dceuwrz+DGv0fHz5MLUkt+V/kePSV6kV5n0b9ruf+fib/vs18kHXdXyf+Jrff+BD/wCNfVs8yW9v JO+dkal2x6AZNfIR6mvnuF5znGq5tvbf5nXjYpctvMv/ANu6x/0Fb7/wIf8Axo/t3WP+grff+BD/ AONafgrRrbxD4rstLvGlSCfzNzQkBhtjZhjII6gdq9Xf4LeHdrbL3UlbHylpIyAfcbOa9zGZphsJ NQrPVq+39djmp4edRXieQWfi3xHp7lrTX9TgJILCO6cBsdMjOD+NdvoPxs8RWUyprEz6hbEgFs+X Io9QRgH6Ec+orD8d+BX8HS2zx3X2mzuMhGZcOGAGQR078fj+PE1qvYY2iprWL67P/NE+9TlZ7n1/ Yaz/AGnYQXtpeSS286B0cOeQfx4PYjtXifxg1y/HjKKK3v7uPyrRFYLMwBO52yMH0Irr/g7LLJ4H KyKQqXcixk55XCnP5lulec/FyRH8fXCqQSkESt7HbnH5EV83lUJUs0nR5m1FPr5o7a9nRUrbnJ/2 7rH/AEFb7/wIf/GvpH4eT3aeAtK8y9mldo2csztn5nZsde2cV8vDrX1N4NgW38FaKiEkGzifn1ZQ x/U12cTVJQw0eV2u/wBGZYKKc3c6L7Xc/wDPzN/32a8X+NGsX0GuabFDqNzGwtizKkzDgsQD19jX sVeEfGz/AJHCz/68E/8ARkleJw7VqTxvvSb0fU6cXGMaeiOF/t3V/wDoK33/AIEP/jXvPwhur1vB LSzX1xM011I2WkYlQAq4zn2z+NfOxr6O+FUKRfDzT3XOZWldvr5jL/JRXv8AEVWVPB+67Xa/U5cH FOpr2O5+13P/AD8Tf99mvPvGnxbXw7cSadp7td36cSFpW8uJvQ45Y+oBGPXPFZ/xV8aTaLbR6Ppk wS8uVLTyKfmij6AA9ieefT614VznrzXn5Llc6sViMRJ2eyu9fNmuJrRi+SC1Os1T4j+MNVMi3HiG +WN8gxwSmJcHIxhcZGD3/Gucur+7vQv2u7muNmdvmyFtueuM/QVqeGvCmq+Kb3yNPhBRSBLM/CRg +p/oOa9PsPglpyIDqOqXMr7eRAqxgH6sGyOte9iMxwmD9ycrPsjlhQqVNUjxy21G9s1ZbW8uIFY5 IilZQT74Natr418U2IjS28R6rFGnKxreSbB3+7nHf0r2OT4PeFniKAXqHj51nG79QR+lY+o/BG0Y Z0zVp42/u3KBwfXlcY/I1yQ4gwE9HJr1X+VzR4Sqj1LS9RurnR7Kc3kshlgjfeJCd2VBznNW/tlz /wA/E3/fZrL0Wzk03QtOsZWVpLe2ihcoSVLKoBxkdOKvdq+Fr4ip7SXLN2v3Z6cacbK6Jvtlz/z8 Tf8AfZo+2XP/AD8Tf99moaKy+s1v5397K9nDsTfbLn/n4m/77NH2y5/5+Jv++zUNFH1mt/O/vYez h2Jvtlz/AM/E3/fZo+2XP/PxN/32ahoo+s1v5397D2cOxN9suf8An4m/77NH2y5/5+Jv++zUNFH1 mt/O/vYezh2Jvtlz/wA/E3/fZo+2XP8Az8Tf99moaKPrNb+d/ew9nDsTfbLn/n4m/wC+zR9suf8A n4m/77NQ0UfWa387+9h7OHYm+2XP/PxN/wB9mj7Zc/8APxN/32ahoo+s1v5397D2cOxN9suf+fib /vs0fbLn/n4m/wC+zUNFH1mt/O/vYezh2Jvtlz/z8Tf99mj7Zc/8/E3/AH2ahoo+s1v5397D2cOx N9suf+fib/vs0fbLn/n4m/77NQ0UfWa387+9h7OHYm+2XP8Az8Tf99mj7Zc/8/E3/fZqGij6zW/n f3sPZw7E32y5/wCfib/vs0fbLn/n4m/77NQ0UfWa387+9h7OHYm+2XP/AD8Tf99mj7Zc/wDPxN/3 2ahoo+s1v5397D2cOxN9suf+fib/AL7NH2y5/wCfib/vs1DRR9Zrfzv72Hs4dib7Zc/8/E3/AH2a Ptlz/wA/E3/fZqGij6zW/nf3sPZw7E32y5/5+Jv++zR9suf+fib/AL7NQ0UfWa387+9h7OHYm+13 P/PxN/32a6a1d2tISSxJRSSfpXJ11dpn7FB/1zX+VexlNacnO8n0OPFxUbWRylFFFfPnecV8SfBz +KNGWWzjU6jaktFk48xD95P0BGe/pk188TRSQyvFKjJIjFWVhggjqCPWvryvPPiH8PE1+J9U0tFT VEHzoOBcAdj/ALXoe/Q+31mRZyqVsNX+Ho+3r5HDisNze/Hc8u8FeNr3wjf/ACgz2Mh/f25bGf8A aX0b+fQ9sfQWi65p3iDTY77TbhZYm+8ufmjb+6w7H/PQ18qzQy20zRTRvHIhwyOpBU+hBrW8OeJd R8M6gl3YTFc48yJuUlUdmH589R2r2s1yenjV7WnpP8H6/wCZzUMQ6fuy2PqavHvjp93Qf+3j/wBp 16lomqw67otnqcGBHcxh9oOdrdGXPscj8K8s+OUiF9DiDDeonYj0B8sA/oa+YyOnKnmUYSWqvf7m duKadBteR4/0rqfD3jzW/DGntZabJCsLymUh4gx3EAdfoorlq7Xw38NdX8T6SupWd1Yxws7IFmkc NkdeikfrX3eLlh1T/wBoty+ex5dNT5vc3LH/AAt7xV/z2tf+/AqrqfxN8Ravpk+n3UtuYJ12OFhA OPrWx/wpTxF/z/aX/wB/ZP8A43Wdr/wu1rw9olxqt3d2Dwwbd6xO5Y7mCjAKAdSO9edSllTnFU+X murevQ2ksRZ3vY4WvSPgvEknjO4Zxlo7J2Tnod6D+RNeb16V8E/+RwvP+vB//RkddWaO2Cq+jM6H 8SJ7Zq//ACBb7/r3k/8AQTXyUetfWetSJFoOoSSMFRLWVmJ7AKcmvkw9a8PhVfu6nqv1OrHbxO3+ E8Rl+IVi4IAijlcg9/3bL/7NXrV38UPCdoWU6jJJIjbWjW3kBBHXqoH615V8If8AkfIv+uEn8qg+ KOkf2T43uyoIivALlPct97/x4N+ldGMwdDG5j7Ks2rRTVrd3foRSqSpUeaPcPiB4zHjDUoVto3is LYERB/vMTjcxx9AAP8a4+KGSaVIokZ3dgqqoyWJ6AD1qKvo/wX4M8NafYWWrabC1xNLGJI7mZ9zA MOgAwARyOmeua7sViqOVYaMUnbZLz82ZU4SrzbbNXwfoR8OeF7HTnwZkTfMR/wA9GOWH4ZwD6AV4 Z8UHV/iJqpRgwzEMg55ESAj86+kK+YvH+D471gggj7QRx9BXgcOVJVsbUqy3af4tHVjEo0oxRzYr 6y0OJIPD+mwrnYlpEi59AgAr5NHUV9eW/lfZofs+PJ2Dy9vTbjjH4V08VS/d016/oTgFq2S18/fG KV5PHJV2yI7aNUGOg5P8ya+ga+a/iRd/bfH2qyBsiOQQqA24DYoUj25B49c153C8G8VKXaP6o1xz /dpeZyNfTnw+jSPwFpCooAMG78SxJP5k18xjrX1X4WjMPhHRo2Qoy2MAZSMEHYucj616/FEv9nhH z/Q58CvfbPnnx7ePe+OdZmbPy3LQ8+ifIP0WuaHJFaOso8euX6OpVluJAysMEHceDVa2lEN1DK6C RUcMyN0YA5wfrX0FGKhRio9EvyOSbvJtn0/4S0GLw54atNORcSKgec5B3SkZY5+vA9gKXxT4ih8L 6K2pTQPOiyKmxCAefrWvHIk0SSxsGR1DKR3B6GuL+KWl6lq/hSK00u2luJTdo0kcfXYFfk+2dtfm +HtisavrD0b1voe1K8Kb5Ohg/wDC7tN/6A91/wB/Fo/4Xfpv/QHuv+/i15Jq2h6nokscWpWUtq8i 7kEg+8PWs78a+yjkOXSXNGN16v8AzPNeLrLRv8D6n8LeIofFGirqUMDwo0jJscgnj6VDY+MLHULm 6SC3vPstq0iy3rRgQAoMtznP6VnfC1FX4daWyqAWMxYgdT5rjJ/ACoh4Gkudfnv7ye0hhmhngkjs YWia4WRSuZSWIJAOeB15r5R0MHHEVqdR2SbS+TPQUqjhFrqaVn41sb6RUSy1GNpoXuLXzYAv2pFG T5fzcnGCM46ipIfGOmXEOjzQrO41bd5C4XKBBly/OAFxzjNZfhnwOdBv4JpBpsi2yMsc8NqyTOSM ZZtxHQnOBzTtG8CrpmvX95NciWykSWO0tgCPIWVtzj+gq6lPLU5csnZLTz3Vvyf3iTq6XRoad4z0 7Ur63t47a9ijuiwtbiaHbFcFeTsOc9ASMgZqrp/xC0vUTYFLPUYoL2b7PDcSwAR+bkgISGPJx2yP yOKXh/wAND1K2kb+zZoLZmaOb7KRcNkHG5t23jI5A5xUtn4KuLbwz4e0pruEyaVqKXjSBTh1V3ba Pf5x+VVKnlibUW2tO/nr+X3iTrW1X9af8Et+PtUuNH8PR3dvcPAwuold05JQt8w/Kob3xfZXek6x GV1TTp7GJZJA0KrMEbo6Atg/iRWp4o0SXX9LitIpkiZLiKbc4JGFbJHFZms+ELjU77XLhLmJBqNk lsgZT8hU5yaywssI6UFV0abd/mvLtcqanzPl/rcwtX17UYZvEH2e+uBHb6TBPAWxlXbGW+p710tl 4tge9t9JS1vru9WGBriSKMFIvMUEFySDjnJIBqhfeCLi7OqFbuJftunQ2a5U/KyYyx9qNQ8FXd/q mnTm4soEszCwuIYGFydigFd+7BUkHqOK6pywFSPLJpafjZdt9b/MhKondf1qzodd1208PacL69Ep gMiRkxqGILHGSMjisp/HdjGG3abqpaGLzrlBbjdbIScNIN3GQN2Bk45xV7xRokniDS47OKZImS4i mLOMghWyRxWJrngP+0dfudVt/wCz5Gu0RZY763aQIVGAyFWGDjHB9K48HHAuC9u7PX9Lffr9xdR1 L+6a194w0+0vILWGG7vppbcXRFpD5nlwno7cjj6ZPtyKo2/imx1e+8NXdvcX9vDqH2oxwlUCSCMY bzeTjGCVxn3rJ163PhnXYb7T7xrZ5LBbVol0+SdGVeF2bTgNwMAnFO8MeDro6N4UkvcQnTo7vz4H BDMJ9wA9iAea61h8HToKrfe/z92XS1t7bGfPUcuX+t1/wTdsfHOl397bQpBeJBdSGK2u5YdsM7js rZz2OMgVXm+IOl28l4JLPURBZ3TWtzcCAGKJg23Jbd0J9OfUciqth4HvYDpVldanFNpWk3P2i1RY CsrsCSods4wM9hzT7vwVcXPhnxDpS3cIk1XUXvEkKnEas6NtPv8AIfzqPZ5Yp2v277X323tq/Mq9 a2xq6p4sttHuJEu9P1JbaJ1SS9EA8hN2OSc5xyBkDrUGiahdXHjfxTZyzO9va/ZfJjPSPdES2Pqa w9b+Hd7q02qH7fZML2bzo557YvPFyP3atuwqDHYZrp9L0SSw8T65qryoyal9n2IAcp5aFTk++ayq rBU6D9nK8nHz3vF9fmNe0ctVpf8AzJW8Q2i6tf6cY5/OsbcXEjbRtKnPA5znj0rNi8dafcPp8VrZ 39xNfQ/aEiiiUske4rub5sdQehNM1bwxqNxrt5qOm6jBbLe2n2W4WaAuVAzhkII557/rWZc+ALu6 0fSNNN5ZRizRFa7WBvPQhixMb5GARgYI96KNLL3FOct7d9NHfp37MJSq30RtXnjbTbO6uozbX0tv ZyCK6u4YN0MDcZDHOeMjOAcVKniuyl8SS6HDbXkt1EU8ySOIGNVZAwctnhcEDnv0zWBffDrzNXvr u3/syWG+nad/ttq0kkTNy2whgCM84NdDpOgHTPEetakHjMN+LdY41BzGIkKYP1oqwy+NO9Ntvl/G 6/4P3DTqt69/8/8AgEus+I7XRbi0tXgubq8ui3k29rGHdgBktyQAB9azP+Fg6QulHUWt75YRfnTy piG8S7d2duc47eue1V/GcJstX0rXYLw21zbCSLLWkk8bqw5DCPkH0/8ArVk+HfDeo6po0U92zRP/ AMJD/auZ4SjSxgY+5/CWOTitsNhcE8MqtX5773ei0t2/UmU587jE35fHdjE0iDTdVkaCNZbpUtgT agjIEnzcHHOBn9K07XxJYX2rw6bbGSR5rEX8coA8toi20c5znPbFY974U1Nb/VpdI1O3t4NXUC6S eAu0ZwVLRkMOSD0NMHgy702+sLnRNRit2g0/+z5DPCZMpu3bxgj5s8+lZunl0o6Ss2vPe3XTvord Bp1U9idfH2mPZaTcxWl/J/avnC3ijiVnzGcEEBu56fritfQ9ftdft5pbdJoZIJTDPBcJtkicdQw5 /nXCv4b1PRb/AMD6ZaXMZurQ3x+0GFmj+YbwGGQcEHb1HtXY+GtAl0VL6e7uUuL6+uDPO8abEBPR VGTwKWMoYKFHmpvV3tvtzNdtrL1CnKo5Wf8AWiOc0HxNc3niPXbzUm1G2sbIELDKirDAoUE78Etv 7jGe/tW/pPi+w1a+hsxb3trLcRGa2+1Q7BcIOrIQT255wcVDH4REieI4bq4DRaxJvHljDRjbjv3z zUOk+FdQi1XTb3VtRhuBpVu0FmsEJjzuXaXcknnb2HFVVlgaqk3o0la1+3prro79ASqRsv63/wAj Q8O+KrTxPE0tha3qQKM+bNEFQnP3QQTkjvj86r6n430/TLy9tja39z9hQPdS2sIdIcjIDEkc/wCT 0NWvCWiSeHfDNppU0yTSQb8yIMA7nZu/1riPFENxpepeILbTbqYnWIRutRp8krO5QriNx8uDnknp zgZFTh8Pha+LnCPwrbfXVK7du12EpzjTTe50h8VWCaut7Lc30du2iLf/AGdkXyxGzjDHBJ8zkDHT Het3RdYXWtPF3HaXVtGxGwXKKpdSAQwwTxz/ADrnLHwneobS6Z7YSJoEemNBPF5i+YCGJYZwy8EY rS8I+G5PDdndRyTxs1zOZvKhQrDDn+FASTj8f5UY2GB9m/Zy95Wt/X6hB1ObVaHRV1dp/wAeUH/X Nf5VyldXaf8AHlB/1zX+VRk/2/kZ4zocpRXiWo/GLX7PVLu1jstNKQzPGpaKTJAYgZ+eqn/C7PEX /Pjpf/fqT/45W64axnl94/rlM9FtfiboJ1G70/UZH0+6tpnhbzRuRipIOGA9j1xXQJ4j0OSFpU1n TmjT77rdIQv1OeK+X9U1KTVdVutQlijiluZWldYwQoYnJxkk9feqP517c+GMPNJxk4vqtznWOkul z0X4satomra7bSaU8U0scRW5uIiCrnOFGe5AB554I9K86zSUV7+GoLD0o0ou6Xc5Jzc5OT6n0N8I UnTwIhlYmN7iRoQRjCcAj3+YNXG/G6RDr+mxBvnW1LMMdAXIH8jWZpnxZ1nR9MttPs9P0xYLdAiA xSZ47n5+p6mue8U+Kb3xbqUd9fxQRyxwiECBSF2hmPcnn5jXiYXLK8Mxlip2UXf8djpqV4uiqa3O fr6J+EaMvgKAspAaeUqSOozjP5g187V3WgfFHWfDuiW+lWlrYPDBu2tKjljuYsckOB1J7V25zg6u Lw/sqW909TLDVI0580j6I7VwfxekCeBJFL7d9xGoGcbuSce/TP4Vwn/C7PEX/Pjpf/fqT/45WN4n +Imq+LNLSwvreyjiSYTAwI4bcFYd2PHzGvAwGQYmhiYVKlrJ33Oyri4Sg4o43HOK9R+CUAPiPUZy TlLTYB67nU/+y15eK6Lwr4wv/CN1PcWMNtK06BGE6swABzxhhX1GYUJ18NOlT3aOGjJQqKT2PoXx hLHB4M1tpGwDZTKOO7IQP1Ir5X7132sfFfW9b0i5064tNOSK4TY7RxuGA9suR+lcEelcOSZfUwVK UKu7f6GmKrRqSTid98IFJ8dxkAnFvITjtwK7b4zaN9q0G11WNcvZy7JCF/gfjJPswX/vo15T4W8U 3vhLUZb6wigklkhMJE6sV2llPYjn5RXQ6r8V9Z1nSrjTryw00wXCFH2RuCPQj5+oOCKjFYHEyzGG Kp25VZb9Nb/mVTqwVFwluzz+vcPgxr32nSrnQ5XG+2bzoQTyY2PzYHoG/wDQ68PrY8Pa7d+G9Yh1 Oy2GWLcMOCVYEEEEAjPX19K7sywf1zDSpdd16oxo1PZzUj6qr5g8c2r2njjWY5AQWu5JBkY4c7x+ jCuo/wCF2eIv+fHS/wDv1J/8crlvE/im48VXkd1eWNlBcKu1pbZGUyDtuyxBx615GSZZisDVk6tu Vq2504qvCrFKO5z2e9e+eBPiHo914etLLVL6K1vbdVhYzttEgAwrBjx0Aznv9a8DzSV7OPwFLG01 CppbZo5qNWVJ3R9Oav498N6VYSXP9q2ty6g7IbaZZGdscD5ScfU8V82313LqF/cXkx3SzyNK5Hdm OT+pqtSVll2V0sCpcjbb6sqtXlVtcnhikmmSKJGeR2ChVGSxPQAetfWOnRPBplpDKNskcKKwznBC gGvlvQ9Yl0LVodRhtreeaE7kWdWKhuxwCOR2rtv+F2eIv+fHS/8Av1J/8crhzzL8RjeSNK1o33fc 0wtWFK7l1KvxW8PSaR4qkv0QC01AmVSo6PxvB98/N/wKuAz0rudd+Jup+I9KfT9Q07TDExDKyxyB kYdGU7+CMn8zXC16mAjWhQjTr/EtPVdDGs4ubcNme0fD/wCJ2nW+kQaTrtw0MsHyQ3DKSrJ/CGIy QR06YwBXo8fiPQ5oDcR6xYNEv3pBcphfqc8da+UBS8+9eZi+HcPiKjqRk4337G1PFzirNXPRPi7r FnqviS0WwvILmCG1ALwOHUOWYkZHB421513oNFexhqEcPSjSi9Ec85ucnJn038PIkh8AaQsY+Uwl sZ7liT+pNdPXz3o/xY1vRNJttOt7TTnit02I0kbliPfDgfpV3/hdniL/AJ8dL/79Sf8AxyvjcVw9 i6tedRWs23v3Z6MMXTjFI93orwf/AIXZ4i/58dL/AO/Un/xyj/hdniL/AJ8dL/79Sf8Axyuf/VnG +X3l/XKZ7xRXg/8AwuzxF/z46X/36k/+OUf8Ls8Rf8+Ol/8AfqT/AOOUf6tY3y+8PrlM94orwf8A 4XZ4i/58dL/79Sf/AByj/hdniL/nx0v/AL9Sf/HKP9Wsb5feH1yme8UV4P8A8Ls8Rf8APjpf/fqT /wCOUf8AC7PEX/Pjpf8A36k/+OUf6s43y+8PrlM94orwf/hdniL/AJ8dL/79Sf8Axyj/AIXZ4i/5 8dL/AO/Un/xyj/VnG+X3h9cpnvFFeD/8Ls8Rf8+Ol/8AfqT/AOOUf8Ls8Rf8+Ol/9+pP/jlH+rWN 8vvD65TPeKK8H/4XZ4i/58dL/wC/Un/xyj/hdniL/nx0v/v1J/8AHKP9Wsb5feH1yme8UV4P/wAL s8Rf8+Ol/wDfqT/45R/wuzxF/wA+Ol/9+pP/AI5R/qzjfL7w+uUz3iivB/8AhdniL/nx0v8A79Sf /HKP+F2eIv8Anx0v/v1J/wDHKP8AVrG+X3h9cpnvFFeD/wDC7PEX/Pjpf/fqT/45R/wuzxF/z46X /wB+pP8A45R/q1jfL7w+uUz3iivB/wDhdniL/nx0v/v1J/8AHKP+F2eIv+fHS/8Av1J/8co/1axv l94vrlM94orwf/hdniL/AJ8dL/79Sf8Axyj/AIXZ4i/58dL/AO/Un/xyj/VrG+X3j+uUz3iivB/+ F2eIv+fHS/8Av1J/8co/4XZ4i/58dL/79Sf/AByj/VrG+X3h9cpnvFFeD/8AC7PEX/Pjpf8A36k/ +OUf8Ls8Rf8APjpf/fqT/wCOUf6tY3y+8PrlM94orwf/AIXZ4i/58dL/AO/Un/xyj/hdniL/AJ8d L/79Sf8Axyj/AFaxvl94vrlM94orwf8A4XZ4i/58dL/79Sf/AByj/hdniL/nx0v/AL9Sf/HKP9Ws b5feP65TPeK6q0/48oOf+Wa/yr5d/wCF2eIv+fHS/wDv1J/8cr6W8MXT6n4T0a/mVRLc2MEzhFOA WjUnHtzXoYHJcVh781tfM5sRiITtY+L9d/5GHU/+vuX/ANDNZ1aGu/8AIw6n/wBfcv8A6Gaz6+wO EKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAK+3fAv/ACT3w1/2CrX/ANFLXxFX274F/wCSe+Gv+wVa/wDopaAP jLXf+Rh1P/r7l/8AQzWfWhrv/Iw6n/19y/8AoZrPoAKKKKAFoxTgMVo6JapdanEkoBQZYg98dqUn yq7NaNKVWpGnHduxmlSOx/Kiu/1KCyltgt2VQEgK/AIPsaxzoOmSMfK1AYHberVjGvFq7R6uIyWr TnywkpfNJ/dc5eiuqbwnGwBS7YfVM5/WhfCaA/NdsR7R4/rT9vDuZf2LjL25fxX+ZyuPeiuvXwrb BvnnlI9AAKkHhmwU9ZT7Fh/QUvrNM0jkWMe6S+ZxmKK7dfDmnK2TG7D0Lnmn/wBgaZ/z6/8Aj7f4 0vrUDVcPYp9V97/yOFpfxrvF0TTl6Wi8/wB4k/zNO/sbT/8An1T8qX1qPYtcOYjrJfj/AJHAYorv DoWms2Tarn2LD+Rpp0DTCCBbY997cfrR9ah2Ynw5iuko/e/8jhcGjFdr/wAI1p/91/8AvukPhnTz 0Eo9w3+Ip/WYGbyDF+X3nF0ua7A+F7EjiSb/AL6X/CoT4UiOdt04+qA/1prEUzOWR4xbRT+aOUor p/8AhEhji8P/AH7/APr1H/wik3/PzH+Rqvb0+5k8nxq+x+K/zOcoroW8KTjpPET6EkUn/CKXf/Pa D8z/AIU/aw7kPK8WvsM5+jFdB/wil3/z1g/M/wCFH/CKXf8Az1g/M/4U/aw7k/2biv5Gc/ijFdB/ wil3/wA9YPzP+FH/AAil3/z1g/M/4Ue1h3D+zcV/Izn8UYroP+EUu/8AnrB+Z/wo/wCEUu/+esH5 n/Cj2sO4f2biv5Gc/ijFdB/wil3/AM9YPzP+FH/CKXf/AD1g/M/4Ue1h3D+zcV/Izn8UV0H/AAil 3/z1g/M/4Uf8Ipd/89YPzP8AhR7WHcP7NxX8jOforbbwzfgkDy29w/Wk/wCEZv8A+6n/AH1S9pDu L+z8V/I/uMWitr/hGb/+6n/fVH/CM3/91P8Avqj2sO4f2fiv5H9xjcUcVrHw7qQb/UqffzF/xpv/ AAj2p/8APsP+/i/41XtId0S8DiV/y7f3MysUYrV/4R7VP+fcf99r/jR/wj2qf8+4/wC+1/xo9pDu hfUcT/z7l9zMrFGK1f8AhHtU/wCfcf8Afa/40f8ACPap/wA+4/77X/Gj2ke6D6lif+fcvuZlYoxW uvh3USeYVA9fMX+hqRPDN8zYIjX3L/4VPtYdy45fipbU39zMSiuiXwpcHrPCPpk/0qRfCRI+e8wf ZM/1pe3p9zWOUYyW0PxRzNFdZ/wikH/Pw/8A3zUo8LWOOZJ/++l/wqfrFM3WRY1/ZX3o489aTrXX SeFbdidk8gHbIB/wqhc+F7mPLQSJKB2+635dP1pxr031MquT4ymruF/TUwKSppoZIHKSIysOoYYI qKtjzHFxdmJRRRQIKKKKACiiigAooooAKKKKACiiigAr7d8C/wDJPfDX/YKtf/RS18RV9u+Bf+Se +Gv+wVa/+iloA+Mtd/5GHU/+vuX/ANDNZ9aGu/8AIw6n/wBfcv8A6Gaz6ACiiigBa0NIuxZX8crf dzhvoaoUAd6TSaszWlUlSmpx3Wp13iKxNxbLdRfMyDnB4K9c1yOSD1xXZeH7sXmnG3lwzRjaQe6n p/h+VczqVobG+khOdoOVJ7r2rCi7NwfQ9fNaaqRhjKe0t/JlZZZEbKuwPrmrSarepgC5l44ALnH5 VS496St7J7njxqzh8LaNZPEGophfPBA/vKD/AEzU6eKL1TysT/7yn+hrCoqXTg+h0RzDFR2qP7zo R4ruc/NBCR9CP60v/CWT/wDPtH+Zrnc0ZqfY0+xqs2xi/wCXjOmXxaQPnswT7Pj+lO/4S5P+fM/9 /f8A61cvRR7Cn2LWc41fb/Bf5HVjxZCetqwPs4P9KcPFVuSM28gGeSCK5PIpM1P1en2LWeYz+b8E dl/wlFh/dn/75H+NNbxRZj7kcpPoQB/WuPz7UUfVqZTz3Gd19x1jeK4QDttWPplgKgfxZIT+7tUX j+Jyf8K5s4pKaoU+xnLOsbL7dvkjdk8T3rH5REn+6p/qaqvr2pSYBuSMf3QB/IVmZozVqnBdDmnj 8TPeb+9l46rfE5N3Nn2cioWu7lyS08hJ6ksar4o49KpRS6GEq1SW8m/mTfapv+er/wDfRo+1Tf8A PV/++jUNFFkL2s+5N9qm/wCer/8AfRo+1Tf89X/76NQ0UcqD2s+5N9qm/wCer/8AfRo+1Tf89X/7 6NQ0UcqD2s+5N9qm/wCer/8AfRo+1Tf89X/76NQ0UcqD2s+5P9qm/wCez/8AfRqRNQu4xhLiVRno HIqr9a0NH0ufWdWtNOtv9bcSBFJ6LnqT7AZJ9hQ1FJt7IFVqX0bI/wC1b8f8vk//AH8NP/tnUP8A n6k/Oo9QsZtN1C5srhQs1vI0TgcjcpwcVUpJRauti1ia0dptfNmqviLUlx+/4HYov+FTp4nvlzuE T/7ynj8jWFmjNJ04PoaxzDFR2m/vZ0i+LJQw32yH1wx5/nUy+LIv4rVh/wADz/QVytFQ6FN9Dojn ONj9v8EdmviewbAZJh65UYH61KniHTXzmZk/3kPP5Vw/NLmpeGgdEeIMWt7P5HerrWnN0uk59QR/ Spxe2jHAuoGz2EgrzrNOBFS8LHubx4jrdYr8T0b7TB/z3j/77FH2mD/nvH/32K843H1NG4+ppfVF 3NP9ZJ/yfj/wD0U3dsv3rmFR6mQCon1SxQ4N3F+Bz/KuALGm01hY9zOXEdX7MEd2de0wZzdDPsjf 4VCfEmn46y/98VxVLn2p/VYGT4hxT2SXyf8AmdkPE9gTgrMPfaP8a0LTULW8H7mQFu6nhh+FeeZq WN2RgykqRyMcYolhYtaFUeIMRGX7xJr7j0C6sbe9TbPGrccN0I+hrgrmA2t1LC3VGIrvNPuftenw Tk5LIN31HB/WuU8Rpt1eQj+JVz+X/wBaow7ak4M688pU6lCGIgtXb5poxaKKK7D5QKKKKACiiigA ooooAKKKKACiiigAr7d8C/8AJPfDX/YKtf8A0UtfEVfbvgX/AJJ74a/7BVr/AOiloA+Mtd/5GHU/ +vuX/wBDNZ9aGu/8jDqf/X3L/wChms+gAooooAXFFGantrdri4SJfvMwUfjSKjFyaS3NnwxFK180 ikiNFIb3z2/r+FWfFkS7IJcfPkrn261uWVpHY2ywx9F6n+8e5rm/FFz5l1Hbg8RLk89z/wDWx+dc cJ+0rXR9XicOsHlbpzd27fffp6I52iiiu0+SCiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo ooAKKKKACiiigAooooAKKKKAOts/hz4rvoRNb6QzRMAys0sahgRkEZYZHuK9B+G/w+1PQtbbVdZh iiZISsMYkDsGbgk4yOmR1/irnPht461DTNRtNDmDXVjcSiONB96FmIAKk/w56j3J+vvFfIZ3mONo N4eajyy2avdr7z0cLRpytNXujx34reDL261iHV9K0+e5+0JtnWCMuwdeAxUDPIx/3z715Pc2lzaP subeWBv7siFT+tfWl7dRWNlPd3DFYLeNpZGAzhVBJOPoK+dvGvju98XTiFVNvp0bExQA8sezP6nH 4D9a6cgx2IrwVJwvGOnNf7l5kYulCL5r6vocXRRRX0xwhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA BRRRQB1/hafdbSwE8o24fQ//AKv1qh4pAGoRkDrGCffk1B4duPK1ZFJ+WRSp/mP1Aqx4r/4/of8A rl/7Ma5lG1b1PoJ1va5Sk94uxz1FFFdJ8+FFFFABRRRQAUUUUAFFFFABRRRQAV9u+Bf+Se+Gv+wV a/8Aopa+Iq+3fAv/ACT3w1/2CrX/ANFLQB8Za7/yMOp/9fcv/oZrPrQ13/kYdT/6+5f/AEM1n0AF FFFADqt6fcC2voZj0VwT9O9U6KTV1YuE3CSkt0emKwZQykEHkEd64TWA41S435zvJGfTt+mKt6Tr r2IEU2Xgzxjqv0rburSx1yLzIpV8wDhl6/iK5IJ0Ze9sfU4mpDNMOlSdprXlf9fccRR+NbN14cvY MlFWVfVDz+VUX0+7iGXtplHqUIrqU4vZnzdTCV6btODXyKlH41aSwupThLeVv91Canj0TUJCMWrj Prx/Ohyit2TDD1pfDBv5MziMU8AscDJJ7Cuhh8OJCnnX9ysUeeinr+J/+vTm1fTtOHl2FsHfvIe/ 58/yqHUv8KudkcvcFzYiSgvPV/cjOh0K/nG4QFF9XOM/geauDwrck/NPCB9Sf6VBN4lv5G+Rkj/3 V/xzTE8RairZaZWHoyD+gqX7Z7WN4PK4aSUpeehfHhP5cm8+b0EfH86ifwpcqMpNE3tkipoPFZzi 4tx9UOP0P+NakGu6fcYAm8tj2cY/Xp+tZOVeO56VLD5PXVoOz821+ZzEuhahFy1sWH+wc/oOazmj dGwykY9RXpCOki7kdWU91ORSPFHKMSIjj0ZQRSWKa+JDqcPU5a0pteup5tjrR/DXc3Gg2FwD+7Mb eqHH6dK5fU9Kn02T5vnjY/K4HB/wNdFOtGeiPGxmVYjCrnlrHujMooorU8wKKKKACiiigAooooAK KKKACiiigDv/AIT6YL3xtHcuR5VjE87FumcbRz2OWz/wE10njj4q5Mmm+HJSuDtlvV69ekf/AMV+ XrXlkGpXltY3VpDOyQXO3zlXHz7c4BPXHJ46dPQVRxxXnVMtp18V7etrZWS6erN413CHJH5n0N4Z 8XweMPB99BOEOpRWrx3EBAPmDZjeB6HuOx49M/PR4P0rR0TWbzQdWh1CykKTRH8GXup9iKzc1WCw EcJUn7P4ZWaXbe4qtZ1Iq+6G0UUV3mIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAT20xguop h1Rg35HNdB4qUN9lmUkqwYZ7diP51zeOK6a0I1rRjaMf9IgHyE9wOB/gfwrKeklPsepgX7SjUw3W STXqtbfM5aipGUoxVgQQcEEdKjrU8vYKKKKACiiigAooooAKKKKACiiigAr7d8C/8k98Nf8AYKtf /RS18RV9u+Bf+Se+Gv8AsFWv/opaAPjLXf8AkYdT/wCvuX/0M1n1oa7/AMjDqf8A19y/+hms+gAo oooAKKKKAFzUiSPGQUYgjoQcEVHiigabWqNSHXdRh4W4Zh6Nhv51aHim9UAGOFvcqef1rBxR0qHT g90dUcfiYqym/vN5/FF6wwEhX3AP9TUD+IdRkBHnAA9lUf8A66yKKFTgug5Y/Ey3m/vJ7i6muH3S yO7erHNQUUGqOWUnJ3b1Eooopki0oBrY0fwzrGvPt0zTp7gDq4GEH1Y4A/Ou+0v4J38219U1KG2X vHApkb6ZOAO/rXHiMww2H/izSfbd/cjWFGpP4UeXw3M1u+6GVkPqpxWxbeJrqPAmRZ1/75P5j/Cv abH4U+FNNTzbmGW7KDcXupsKMdThcDH1zV9/E/gnw5mOO9022xwVtIw2OTwRGD3zXkVM8pVHy0KU pv7v82ehQeIoaxqcv9dtjzPT0vdRVjHpWoLt+9m2cgfiBj86Zc28dzA8Mq5Rxg+3uK7u7+MPhi33 CL7bckEgGOEAH3+YjiuC1LxlpWs6zvtbF7ISD5y7ggvn0A4+uarC1MVUk5TpOC/r5nvYXNadT9zi JJ30v/mZ1j8M9d1WEz2P2WSLcVBM4DDHqO1aqfBbxG0YJu9MQkZKtLJkexwmK1dI1u70Scy2xVlY YaJ87W9M+/vVfUPi94lsrlo203TUX+HckjZH13jP5Vc62ZyqONHlt57nl5hltPCy5mnyv8DIk+EH ilXZUSzcA4DLPwfcZGapzfCzxfDvP9lCRUBO6O4jOfoN2f0roR8b9S4zpNqTjnDtV6D45LlBcaAQ MDe0d3+oBT9M1Hts6j/y7i/69TzOXDP7T/r5HnF34R8Q2QZrjRb5EXGX8hioz/tAYrIkhkhkMcqM jqcFWGCPwr3iz+M3h2cAXNvfWz4JOY1devQEHP6Vsx+O/BesoIJNStHXI+S6iKKCQf74A9ef8aX9 rY6l/Fw7+X/DP8w9hSl8Mz5qI96Svo+++HHg/XIPtEFokQk5Wexl2gjJ6DlOvtXHap8EpkBfSdVS T0iuU2n/AL6XPv2FdFHPsHUdptxfmiZYSottTyGiuh1rwbr3h/Lahp0qQgkCZPnjP/AhkD8cVz+P avYp1YVI80GmvLU5nFxdmhtFFFUIWgU7GTgZq3Fpl5ONyW0hHrsOPzpNpbmkKc5u0Ff0KVKKvnSN QAJNrJx6CqkkMsTbZI2U+jDFCknsxzo1IfFFr1RDRRRTMgooooAKKKKACiiigAooooAKKKKACiii gAooooAXtVyxvJLG5SeM9Oo9R3FU+9FJq6sy4TlCSlF2aN7XrWN1j1K25in+97N/n+VYRya3tDmW 6gl0uflHBMfqG9v5/hWPcQvbTvC4wyHBFRT09x9PyOzGxjNRxEFpLfyfX79yvRRRWhwBRRRQAUUU UAFFFFABRRRQAV9u+Bf+Se+Gv+wVa/8Aopa+Iq+3fAv/ACT3w1/2CrX/ANFLQB8Za7/yMOp/9fcv /oZrPrQ13/kYdT/6+5f/AEM1n0AFFFFABRRRQAUUUUAFFFFABRRRQA7tRjPSus8LeANZ8UOrxRfZ rLPzXUwwv/AR1b8OPUivZtG8JeGvA1gb2ZovNjGZL66IyD6L2XnoBz25ry8bm9DDPkXvT7L+v+Cd FLDynq9EeSeHPhfr+vBZ5Yhp9oeRLcqQzD/ZTqfxwPevUdJ+Gvhbw9a+ffRR3kiDL3F4RsH/AAE/ KB9c/WsPxD8ZrOBWh0C2NzJyPtE6lUHuF6n8cV5ZrXifWPEE2/VL6WcL91OFRfoowAffGa89Uczx +tSXsodlv/X3ehrzUaPwrmZ7frPxT8M6KhgtJDfSoNqx2oHljHQb+mOO2a881j4w+Ib9itgINOiy cbVEj492YY/ICvOjQCR3rtw2R4Ohq48z7vX8NjKeJqS629DS1PXdU1dg2oahc3JByBLKWAPsOg/C syijvXrRjGKtFWRg23qxKAcGiimI6nSPEC7Vt7xjnosh/r/jW7cW1vfW3lyKrowyrDt7g155itPT dZuLBthJeHPKH+npXLUoa80Nz6HA5xaPsMSrx2v/AJ9w1XSJdObcMvCx+V/T2NZVegwXNpqlqwUh 1YYZCOR9RXH6tpzafdsgBMTcox7irpVXL3ZbmOZ5dCklXw7vB/gZtFFFbniF6y1K90+TzLG8uLaT +9DIyH8wfc12OlfFvxNp2FuZIb+IcbZ4wGH0ZcH881wNFY1sLRrq1SCfyLjUnD4WfQGi/F7w/qW2 O+WXTpj/AM9Pnj/BgM/mBWhf+B/CHim2a5t4bYM+cXNg6jnufl+U/iP5184cZrd8O3et2V55+jXM tvIMbmQ4U+zA8N9CDXiVcjjSbqYSo4P10/z/ADOulXnVapyjzX+86TxB8Jte0lnlsEGpWyjOYRiQ D3TqT/u5rmtO8PTXWHn/AHMXuPmb6D/GvQ9U8b6hPYRQaheRW424kMKld59SMk/gPyrb0DwlYazp /wBrXV451YYBsyDsPuSOvsQKuOPxGHoXxbV+jSZ61PLcLSlzV5a/y9fmcNaabaWI/cxAN3ZuW/P/ AAq3Vbxd4P8AFOgNLcrPJeWC5bz7cEbF/wBtRyv15HvXCpfXUZylxKv+65FdlGMcRD2kJqSOn+26 GH/dwpNL5I9DpkkaSxlJEV1PUMMg1xlt4gvoCA0pkX0cZ/XrXV6ffx6hbCROGHDrnkGipRlT1PSw mZ4fGPkWj7M5bWdJOnzeZECYH6H+6fQ1j5wa9IlijniaKVA6MMEGuL1XSJdPk3ffhY4Vv6H3rpoV uZcstz5/N8qdCTq0l7r38v8AgGTRRRXSeAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFq0na 2u4ph1Rga1vE9ui3MNynSZOfcjHP5EVhda6TV/8ASPD9ncc5XA6e2CfzFZT0mn8j08L+8wtWm+lp L5b/AIHMUUUVqeYFFFFABRRRQAUUUUAFFFFABX274F/5J74a/wCwVa/+ilr4ir7d8C/8k98Nf9gq 1/8ARS0AfGWu/wDIw6n/ANfcv/oZrPrQ13/kYdT/AOvuX/0M1n0AFFFFABRRRQAUUUUALRRWtofh /UPEWoLZadAZZDyx6Ki5xuY9hSlOMIuU3ZIaTbsihb2813OkFvE8ssjBUSNSzMfQAdTXs/gj4UQ2 ix6j4iiWa46pZnlE6YL/AN4+3T610fhnwbo3gWwkvbieJrlU/fXs+ECDPRcn5RyB15/SvP8Axv8A FO41VX0/Qnkt7I8SXH3ZJR6Duo6+59uRXzdXHYjMZujgtIdZf1/w/odkaUKK5qmr7HaeKvibpHhx XstOVL29jGzy0OIoiB0LD0/uj6cV4rr/AIk1TxJdm41O6MhH3IxwkY9FXoP5+prF70lepgcroYNX iry7vcxqV51N9hKKKK9EwCiiigAooooAKKKKACiiigCxb3MtrOs0LlGXoRXUrc22v2LQPtjuVGQC e/qPb1FchUsM0kEiyRna6nINZzgparc78JjZUbwlrCW6/wAvMJoXgleOQYdTgiox3rqJ7SPxBbR3 Vu8cdwBtlU5A/r/n6VSHhq+L7SYgP75bj/Gkqsbe87Mqrl1bmvSTlF7NdjDJzUsMEs77IkZm9AMm toaZptmN97eLIe0cXU/5/CkfxAsCmLT7VIF/vkZY+/8A+vNPnb+FCWDhT1xE0vJav8NF8yS20OK2 jFxqkyxr2jB5PscfyFNu/EBWPyNPiEMfQNjn8B2rFnuZrh980jO3qxzUBpKnd3nr+Q5Y72cfZ4aP Kur6v59PkSSStK5eRmYk5JJyTWjo2vajoF6LrTbuSCT+LaflcejKeGH1rKorSUIyi4yV0zg5ne/U 968KfFrT9UEdprQWxuzx52cQv7kn7n48e9P8ZfC/T9bhe+0RYrS/IL7F4inz69lPXkfj614Hmu/8 E/Em88Nsllfb7rS+AFz88PPJQ9x/s9PTHOfnsRlNTDT+sYB2fWPRnVCvGa5Kv3nG6jp93pd69pfW 8lvPGcNHIMEf4j370adfyafcCWPB7MD0I9K+iNU0fw98RdCS4jlSTI/c3cWN8TY+6e/cZU14T4n8 K6h4V1NrS8j3RnmGdR8kq+o9D6jt+tduAzOni70qi5ai3T/QThUw8lUpv0Z01tdQ3dus0Lbkb8wf Q1LJGkkZjkUMjDBUjINcFp+pTafNujbKk/Mh6MK7ayvob+DzYW6feU9VPvWlWi6butj7HLszp4yH JPSXVd/Q5bWdF+wnzocmBj0PVD6H296xcHHtXpMkaSxNHIoZGGCPUVw+rae2nXZUAmM/MjH0rooV ub3ZbnhZxlaw79tTXuvp2f8AkZlFFFdJ4AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA7tXU2yC78J SRgZMYOPXg7v5Vy3Wuq8LyiS1ubZsEAggHvkYP8AIVlW0jfserlFpV3Tf2otfgcpRVm6tzb3UkLd UYiq/bNaLXU8yUXGTi90NooopkhRRRQAUUUUAFFFFABX274F/wCSe+Gv+wVa/wDopa+Iq+3fAv8A yT3w1/2CrX/0UtAHxlrv/Iw6n/19y/8AoZrPrQ13/kYdT/6+5f8A0M1n0AFFFFABRRRQAtFFdF4V 8MXnivVo7O2QrEpDTzdokz1+vXA7/mampUjTg5zdkhxi5OyDwt4T1HxVqAt7GMrCrDzrhh8kQPr6 ng4Hevd0j8PfDfw3ubEMQwrPtBluH/8AZj19gPQVaVNK8EeH47e2jCRID5cefnmfuSfX1P8A9YV4 v4nh8QeJr77Zf3Fu+PljhRiFjX0AI/Xqa+YvVzmpr7tFP5v+vwN6mIoYP3ZSXO/wKHi/xtqPi27B kPkWcZPlWyE4HPVv7zdOfyArk62JPDmqRgk224D+66n9M5qrJpd9CCXtJwB1Ow4/OvpaVKnSgoU1 ZI5PrEKjvzpv1KFFSNG6MQ6lWHYjFR1oWFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAODFTkEipGnl cYMjsPQsTUVFKxSlJaITJPeiiimSFFFFABRRRQAUUUUAdF4X8U6h4V1Nbuzk3RnAmgY/JIvofQ+h 7fpXu9jqGg/Enwy8TqGVxiaBmHmQP6g/ybv+Yr5nrU0TW73w/qcd/YSmOeM/VXXurDuDXlZjlccT +9pPlqLZ/wCZ0Ua7h7stUbnjTwLf+Fb1iEebTXbENzj16K3o3H49vQc7p1/Jp9wJY8HsQehHpX0H 4X8UaX4/0Ka1uoYvtHl7buzfoR/eXvtz+IP4E+O+OfB03hLVtgy9hOS1tKTk4HVW9xkfX+WWX5hO pJ4XFK1Rfiayi6TVak9PyNi1uY7y3WaJgVbr7H0NRajYrf2jRPgN1Rv7rVyOkam+n3AySYXOHX+o 967aKVJY1kRgyMMqR3FdNSm6Uro+wwOMp5jQcJrXZr9TzuWJ4JWjkXa6HBFRetdjruj/AGwfaYB+ 9UfMv98e3vXHsMHB61206inG6PkMfgp4Sq4S26PuhlFFFaHCFFFFABRRRQAUUUUAFFFFABRRRQAt bvhiXy9SaM9JEIx7jn+hrCHer2lTeRqcD5wN4BPseD/OoqK8GjqwVX2eIhPs0aPim28u9S4H3ZV5 PuOP5YrA7V3OvWv2nS3IGXiO8fQdf0/lXD9qihLmh6HZnWH9jim1tLX/ADG0UUVseSFFFFABRRRQ AUUUUAFfbvgX/knvhr/sFWv/AKKWviKvt3wL/wAk98Nf9gq1/wDRS0AfGWu/8jDqf/X3L/6Gaz60 Nd/5GHU/+vuX/wBDNZ9ABRRRQAUUUUAaWkaXc6zqttp1mu+e4cIo7D1J9gMkn0Br6Hgi0j4b+Dtz 4EcKgyMoG+eU+nqSenoB6Csb4YeDR4f0w6tqCBL+6jyA3BhiODg+hPBPpwPWvOviR4ybxNrJtraT OmWjFYQp4lbu5/kPb6mvmcROWa4v6vB/uofE+7/r9Wd0EqFPmfxPYNU+I93q9+9xdWabekcayEBB 6dOfrVIeNFzzYf8Akb/7GuSor6KnRhTgoQVkjyKuDo1Zuc1dvzf+Z2Q8Y22ebWT/AL6FTf8ACX6f /wA87n/vlf8A4quI/Gj8arlRj/ZmH7fid0/ifSZRtfey+hjzUMt54Xm++IvqsTr/ACFcVml/Gnyi WXU4/DKS9GdZJY+GpCdtxsz/AHXPH5g01tB0ZzmPVEVfRpFJ/pXK8+pozSsarDTW1RnSf8IxauCY 9XgYj0Ax+e6o/wDhFx/0Erb865/cfWjcfWnqV7Kt/P8Agjov+EQvG+ZLi2dT0O5uf0pP+EPvv+e9 t+bf/E1z24+p/OjcfU/nRqHs6/8AOvu/4J0x8HzAFjeRgDkkqaYnhZGYBtStwD/d5P5Zrnd59aua UN+p2qkZBlTI9two1JlTrxi37T8Ebj+EYY2xJqaoeuGjA/8AZqePBa978/8Afr/7Kq3i186pGoPK xAH8yawY7iaFt8UrofVWINLUxpwxNSmpqpa/kjp/+ELX/n/P/fr/AOypP+ELH/QQ/wDIP/2VZUPi PUoRj7RvHo6hv161oxeMrhf9baRt/uMV/nmjUynDMI7ST+7/ACJP+EKH/P8An/vz/wDZU1vBsgPy XakepQj+tO/4TUf8+B/7/f8A2NSr4yh2/NZyBvQOCP5Ue8ZXzJb/AKFU+DZ8cXcZ/wCAmq8nhPUU +75UnGflf9OcVpjxjbZ5tZP++hVlPFmmtnPnLj+8g5/I0aj9tj47xv8AL/I5iXQdTjzmzkOP7uG/ lUEulX0Cq0trIqt0O3Nd9Z6rZX8hjt5t7BdxUIw449R71ZmmhgUPLKkak43OwUZ9OaV2L+068Zcs 4a/M8ueKRGwyMD6EYpm0+hr04ahYk4F5b/8Af1f8aebm2IIM8RB4ILinzGn9pzW9P8f+AeX4PpSY Nemf8S//AKdf/HaiNppMvyeTaEsf4QoOfw5o5ilmi6wZ5zxSZr0V9A0tjk2aj6Mw/karSeFdMfO1 ZU5/hfp+eaOZFxzSi900cxomt3nh/U4dQsJDHLGeR2de6kdwf89K+hLefSPiR4PIIHlTDa6ZBe3l Hp6Edj3B968Zl8G25J8u6lX03KG/wrofBP2vwjrPmLdibT5wFuIiCpPow68j9Rkd+PIzbA+3gq1L SpHVefl/kd+FzXDp8spaPumcDr2h3nh7WJ9OvU2yRNwwB2uvZlz1BqfRNY+xv5ExJgbp/sn1r2/4 g+EIvF2hrdWIVtQt0L27r/y2Q87M+/b39Mmvnh42jco6FWU4KsMEGtcuxscfQ974lo159/mejCpU wdVVKb9PNdj0dWDKGUgg8gjvWTqmhQ326WLEc/X2b6/41g6brs9gBEwEkIP3SeR9DXR2uuWN1gCY Ruf4X4/XpWrp1KTvE+pp47B5hS9nVsn2ffyZxl1ay2spjmQqw7H+Y9qrmvRLyygv4PLlUEY+Vh1X 3BrjtS0qbTpfn+aJj8rjofr6GuilXU9HueBmGU1ML78dYd+3qZdFFFbnjhRRRQAUUUUAFFFFABRR RQAUqnDA+9JRQB6PaSi6sopDhhIgLA+uOa4bUbVrS/mgPQNx7jt+ldL4ZuPN01oieYmIA9jz/PNV vFNr8sd0q/7LH+X9f0ripPkquB9ZmNP61l8MQt0r/o/xOVooortPkwooooAKKKKACiiigAr7d8C/ 8k98Nf8AYKtf/RS18RV9u+Bf+Se+Gv8AsFWv/opaAPjLXf8AkYdT/wCvuX/0M1n1oa7/AMjDqf8A 19y/+hms+gAooooAXOa7/wCGHhP+39e+2XUQawscSOD0kf8AhT3HGT9MHrXE2VpNf30FnboXmncR xr6sTgV9IWkFh8O/Av70hlto98rL1mlbrj6nAHoMelePnONlRpKlS+Oei/r8jpw1NSlzS2Rzfxa8 XnTNPGhWUu26uV3TurYMcf8Ad47t/LPrXhecVoavqlzrOq3Oo3jb57hy7HsPQD2AwAPQCs411Zbg o4Ogqa33b8yK9V1J3EoooruMQooooAKKKKACiiigAooooAKKKAOaAHjPritTw/E0ut2+0fdJY+wA qumlX7hStpOVPIIibB/HFbumW7aFY3N/dqI5mTbEjdSfp9cfkals5sRViqbindvRL1MrxBcC41md gchTt/IYP65rJp7MXYsxJJ5Oe9R0zeEVCCiugUUUUygooooAKKKKAOo8GR5u7mTH3UC5+p/+tT/G M5M9tb/3VL/mcf0NVfCt4LbUWgc4WYbf+BDp/X86ueMocfZZx3DKf0I/rU9TyZK2YJy6rT7jk8n1 oyfU0lFUesLk+poyfU0lFAC5PqacHZWDKxBHII7UyigLFkXlypBE8gI5BDmp11fUAwP2y4yP+mrH +tUKKViXCL6Hs3wo8ay3Fy2galOXZwXtHb1HLJ/Mj6H2rK+L3hU2GpLr1quLe7bbOB/DLjr9GA/M H1rza1up7K6iuraRop4mDxupwVYdCK+j9Iv7H4heBilwAfPj8q6jHWOUdx+IDD8K+bx0Hl2Ljjaa 9yWkl/X9X9Tvo2q0/ZPdbHzRRyDWnrWk3Gh6vdabdACWBypI6MOoYexGCPrWZX0kZKUVKLumcbTT sy/ZardWJHlSErnJQ8qfwrrIJ7XXdPZSuOzIeSjdiDXCjpW74ZuDFqHk84lUjHuORWNamrcy3R7O VY2aqKhUd4S0s/PsZFxC9tcPC33kYg1Ae1dL4otVWaK5XguNrfUdD+X8q5o9K0pz54pnBjsM8PXl T7fl0EoooqzkCiiigAooooAKKKKACiiigDovCs228miJ4ePP1IP/ANc10OpwfadNuIsZJTK/Uciu Q0OXytXt2zwW2H8eP613VcGI92opI+yyVqtgZUZd2vkzzMnHFHWrmowC3v54hnarED6dv0ql3ruT urnyFSDhNwe60EooopkBRRRQAUUUUAFfbvgX/knvhr/sFWv/AKKWviKvt3wL/wAk98Nf9gq1/wDR S0AfGWu/8jDqf/X3L/6Gaz60Nd/5GHU/+vuX/wBDNZ9ABRRU8MElxOkMSF5JGCoq9WJOABQ9NwPT /gz4e+1alc65OhMdr+6gJHBkYfMfwXH/AH0KZ8Y/EgvdWh0O3kzDZfPNg8NKR0/4Cp/NmHavR4ks /h74B+bawsodzHp50zf4sePQY9K+b727mv72e8uHLzTuZJG9WJya+bwC+vY6eMl8MdI/1+PzO2r+ 6pKmt3uVaKKK+kOIKKKKACiiigAooooAKKKKACiiigB2OK6Dw5ZKzT6hNHvjt0LKvqwGf0H8xXP8 8V6Do9qlroMavwJEMkh+o/wxUs4sfW9nTsuun+Zyl14g1G5kJ89ogTwsR2gflzWdLcTTtumleQ+r sTUR6mjjvmmdUKcY6RSQ2iiimWFFFFABRRRQAUUUUAOUlWyDzXUXtxJrHhdZ2w01vLh+eSMYzj8R +Rrl8cV0HhiZWuZrGXmO5jIx7j/62aTObFRtFVEtY6/Lr+BztFT3EDQXEkTfejYqfqDioelM6E7q 6EooooGFFFFABRRRQAteg/CjxEdH8TpYysfs2oEQkekn8B/M7f8AgXtXn1SRyNG6ujFWU5BBwQax xNCOIpSpT2aLpzcJKSPZPjR4eDwWuvwIdyHyLggfw9UY/jkfiPSvF8V9L6FqFr4+8CYusM1xEbe6 UD7koHJHp2YfUV86ajZS6bqNzYzjEtvK0T/VSQa8jI68/ZywtX4qbt8joxUFdVI7Mp9q2/DEZfVg 2AQiMee3b+tYgrqvCkGIp7gjqQgP6n+Yr2KztBm+U0nUxcF2d/u1LHij/kFL/wBdR/I1xtdZ4rb9 xbJk5LN+gH+NcmKnDr92jbPZXxsl2S/ISiiitzxwooooAKKKKACiiigAooooAlicxyo69QwI/CvR 0YOiuOjDIrzX0rv9Jl87SrZ+PuBePbj+lcmLWiZ9Nw5UtOdPuk/uOc8TReXqgkB4kQEn3HH9BWFX VeLIyYbeUDgMQT9cEf1rla2ou9NHl5tT9njJpdXf79RKKKK1PNCiiigAooooAK+3fAv/ACT3w1/2 CrX/ANFLXxFX274F/wCSe+Gv+wVa/wDopaAPjLXf+Rh1P/r7l/8AQzWfWhrv/Iw6n/19y/8AoZrP oAUV3vwp0M6t4vjuZEBt9PXz2z/f6IPrnn/gNcHivoL4R6RHpng37e6hZr92lZiMERqSqg+3DH/g VeVnWJ+r4STW8tF8/wDgXOjDQ56i8tTB+NWuYSw0KKQ5ObmcDpjkIP8A0I4+ledaZ4cfUNPNz5wT dny1xndj19Oai8V6y2v+KL/Us5SWXEeeyD5V/QCptE8QDTYDbzRs8WcgqeV9eK2y/C/VsLCl13fq 9zkzCpVmnKjvf8DEkhkhkaORWV1OCD2NQ8g812P/AAkOnXN2pGnqzswAkkC59OuDWN4jgSHW5VRF VGCsFXjGQM/rmu1MxpV5ykozjZ2uY1FFFUdIUUUUAFFFFABRRRQAUUUUASxo0kiooyScAV6Pqr/Z 9IuSny7Yyq84xkYrzq3bZcxMegcE/nXXeK9R8q1FinLygFz6KDx+ZH6e9S9zzcbTlUr04rz/AEuc Uepoooqj0gooooAKKKKACiiigBaKO1aOl6ZLqtyYY2VAo3MzdAM//XpClOMIuUnZIzs1r+HY3fWr cpkbckkemDWyvgyMA77tm9MR4/qa2NP0i00qMtECWI+aVzzj+g4pOSPNxGY0XTlGDu3ocXr8Rh1u 6GAMtu49wD/Wss1r+IL6K+1RpIR+7VQgbGN2O9ZApo7qHN7KPMtbISiiimahRRRQAtHvRVuys5L6 7jt4sbnOBuOAOMmkDaim3sT2ui6jeQia3t98Z6MWUZ7dzWjp+gS28xuNTiVLaJSxBcHd6Dg0/Vbk aVaW+nWV0wlQlpWRyOfTj8eKwJLieYfvZXfJz8zE80tWckXWrJtNKL8ne33nsXwp8RWD6nd6RBbm 3MyecgLcMy8ED3wc/wDAa534w6J/Z/iiPUEAEWoR7uBjDphW/TafxNcf4c1ZtD8RWGpqTiCZS4Bw SnRh+Kkivb/ixpqap4Ge8iIdrN0nRlOdyn5Tz6YbP/Aa+err6nmkKq+Gpo/X+rHrUYqWGcF9k+eu 1d7o0Ag0qBe7rvP481wI616LYjbY24IxiJAfyFezin7qR7HDkE60pdl+Zg+LXBNqncbm/PH+FcxX R+K8G6hGeQhz+dc52rWh/DR5+cO+Nm/T8kJRRRWp5gUUUUAFFFFABRRRQAUUUUAL1rsfDFyJLBrc n5o2zj/ZP/181x3WtbQbo22qICcLJ8jfj0/XFZVoc0GellWJ9hioyez0fzOp1a0F5psseMsBvX6j /OK4E9a9Mrg9YtBZ6lKgGFJ3L9Dz/wDWrDCz3ievxFhvhrr0f6GbRRRXYfLBRRRQAUUUUAFfbvgX /knvhr/sFWv/AKKWviKvt3wL/wAk98Nf9gq1/wDRS0AfGWu/8jDqf/X3L/6Gaz60Nd/5GHU/+vuX /wBDNZ9AEigswVQSScDHevpPWyvhj4Y3EQGw29gLcEdnZQgPA67jnpXhfgbTxqfjXSbUruXzxIw9 VT5z+imvVfjTqAg8M2liCN1zc7jzyVQEnj6sv+TXz2bfvsZQw/nd+n9JnZh/dpTmeDnrRRRX0Jxl 3TYjNqVtHz80ig49M1c8SOX1qfIIxgYPpgVY8KW6z6rvYj90hcD1PT+v8q2dX8ONqN79ojmVNwAc EZ5Hf8qm+p59XFU6eJSm7WX5nDUGuvXwZGM7rxvbEWP61z+p6e2nXrW5cNgAhgMZB9qdzopYqlWl ywd2Z9FFFM6AooooAKKKMGgAp6ruYDIGTjJ6CmVLFE8sqRqpZmIVQO5PSgTOjnGmaE0arAbu6Cht 7NhQexx/n61h3t5Lf3TTzHLuenYDsB7Vr+JvLiaytuDPDCEdx34GP6n8a54dR1qUc+GinFVHq31Y 2iiiqOkKKKKACiiigAooooAX1rp/BxH2u4GRkoDj8a5jtXR+D/8AkKTf9cT/AOhLSexy41Xw8jW1 zX5tNu0ghjjYlAxLZOMk8YB9hXO32v3t/GY3fZGeqoNoPsak8TuH1uUDooUdevAP9axcflSSIwmG pRpRly62uNoooqjtCiiigAooooAWui8Ix79Ukcg/JESD75H/ANeudro/CEmzUpYyR88Rx9QR/wDX pPY5sZf2ErdjH1BDHqFyh5KyMM/jVStLXI/K1q7XB5ctz78/1rNoRtSfNTi/JCg19J+EJ18T/Da3 gmcky2r2cpOSeAUyefTB696+a69q+CGpM9hqmmM3EUiTxgn+8CG/9BX868TiCk5YX2sd4NP9Dtwk rT5X1PHprWW3vZLWRSJY3MbL6EHBH516FGgjjVAchVAzUHi3Rlt/ilfBF/dMVuzk92AJ/wDHyas1 1SrKtThNdUn959Nw/QdONSb6u33f8Ocf4ocNqSgfwxgH8yf61hVf1W5N3qU0oOV3YX6DgVQzXfTV oJHzWOqKpiJzWzbEoooqzkCiiigAooooAKKKKACiiigApykhsim0UAei6fc/a7CGb+Jl+b69D+tY niq3JjguQOQSjH9R/Wk8K3RKzWrN0+dB+h/pWtrEIn0m4Urkhcj2xzXAl7Osfbyksdljb3t+K/zs cBRQetFd58QFFFFABRRRQAV9u+Bf+Se+Gv8AsFWv/opa+Iq+3fAv/JPfDX/YKtf/AEUtAHxlrv8A yMOp/wDX3L/6Gaz60Nd/5GHU/wDr7l/9DNZ9AHoXwetPtHjlZcKfs1tJLz74Tj/vv+da/wAcLvfq 2k2e4fuoHl246b2xnP8AwD9Kk+B1sGvNZusjMccUeMf3ix6/8Arnvi1dGfx7dRHdi3hijGTnqofj 0+9/Ovnl+9zt/wByP9fmdnw4b1f9fkcHRRRX0JxlyyvZrC4WaF9rAY+o9DXQReM5QuJLRS3qrlR+ WDXJ0tKxjVw1Kq7zjc77Q9bfVpZ1kjVNoUqFz75/pXMeIZhLrdyVOQpCdc9AAf1zVvwlOqalJEzA eZH8ue5BHH5ZrO1OwvLSZ3uYmXexO7GVJPoaSWpx0KMKWKlbTRWX9ehm0UUVR6Q6ko681q6Ppb6n dBcFYl5d8dB6fU0iZzjTi5SeiDStEuNUbcoEcKnDSN0+gHc12Mek6bp9kweGNo1G55JFDE47/wD6 qlubq00eyUthEQbVjXqT6CuK1TW7nU22sdkAPyxqePxPc1OrPHUsRjZXXuwX9feXv7W0SN8rpQOD xnH8qc3ie3hDfYtNiicj7+AP0A/rXM4ozVWPR+qU+t36tk9zcSXUzyysXdzlmqDvRRTOhJJWQlFF FAwooooAKKKKACiiigBwrq/DsK6dZ3GpXIKJswmf4hnP6kDFUfDljHcXUlxOu6G3XcQRkE84z+RP 4VU1PVrjU5iZG2xg/LGv3V/+v71L10OStetJ0Y7aXf6Ip3Vw11cyTP8AedixqCiiqOpJJWQlFFFA wooooAKKKKAHA84rX8OSiLW7cnoxK/mDj9cVj1saVpjyOl3cN5FqjAmRjtz7L71LMq/L7OSk91Ym 8VxeXq+/j94it/Mf0rBFaetXq3+pyTR52DCrn0ArM6U1sLDxlGlGMt7C16J8Hb77N40NuxOLu1eM Ddgbhh8478K35mvOxXQeCr5tO8aaTcjOBcKjYP8AC/yn9GNc+Npe2w06fdM66OlSPqel+Nbi3u/F EskOMxRLA7D+IqWJ/Ldj8K4/WbtbTTZTn55BtUe5/wDrVqTStNNJM5G52Lt9TzXBa1fm/vWKk+Un yoPb1/GuLBYfljGHSKR9pmGIjgcJ7OPxPRfqzNzknNHfFW7Cxe/uhDGQpwSWPQAUX1lJY3bQuckc hh3HrXq8yvy9T4z2FT2ftbe7e1/MpUUUUzEKKKKACiiigAooooAKKKKACiiigC/pd0bPUIZs/KDh voeDXc3ahrKdTxmNhn8DXnIrvNFuvtmlxFjl0+Rs+3T9MVy4mO0kfSZDX5lPDy66r9Tgm+8frSVJ IpWRgeCDg0yuo+ckrMSiiigQUUUUAFfbvgX/AJJ74a/7BVr/AOilr4ir7d8C/wDJPfDX/YKtf/RS 0AfGWu/8jDqf/X3L/wChms+tDXf+Rh1P/r7l/wDQzWfQB7P8DYnEGtzEfu2aBQc9wHJ/9CFcT8T5 El+ImqshDAGJePURICPzBrvfgh/yB9V/6+E/9Brzf4g/8j5rP/Xwf5CvnsJrnFd/3V+h21NMPH1/ zOZooor6E4gooooAeCQcg81v6Jqkk1wtjeSGa2m+QrIc4PbB69cVz/rxT43aORGQ4YEEH0NJmdWm qkWv6Rcu9OlttSayVSzb8R/7QPQ1sDQbCxQNqt8FcjOxOv8AIk/lXTWgF1Bb3ksKicxj5sDIyO1c 54m0eQGXUlm3qSNyt1XoBj9Km9zzIYyVWaouXL3t1f6Fc3vh+AfurCSU9zI3X9f6VetvFWnQQkJZ NCx52Rqu0n68fyrjqOKqx2zwdOatNt/NmlqupyapdGV/lQcIo6KP8azR6UUGg6YQjCKjFaISiiim MKKKKACiiigAooooAKKKKACiiigDsvBoH2W5OBncBn8K5vUrNrG/mhPRW+U+o6j9K6Xwb/x6XP8A vj+VVPGUO26tpcffQr+R/wDr1PU8qjVccdOHf9EcvRRRVHqhRRRQAUUUUAL3paSrtlp1xfMREo2r 9524VfqaQpSUVeTsimoORXSeLTtvoI14jWEYA6Dkjj8hUEWgQ7h5ur2SnvtkBx+op3iaWCa6gMU6 zMsQVmTkHk/rS6nK5xnXjy62v0fkc9RRRVHWLWt4baJPE+lNOdsIvIjIfRd4z+lZNXdJ/wCQzY/9 fEf/AKEKmfwP0Kg7STO31IvFYXOFIdUYY6Ecf0rzxuD+Ne0eMtKNnrVwPLxBdZdCO+fvD888fSvH rmB4LmSEj5lYqeK4cvqxq01KPU+hz5OoqVVbNG1omLXTb2+IwQNiH0/ySKta3Et/o8V8g+dQCcDq D1H4H+tQ6kv2Dw7bWpB8yQ5YHr6n9SK1NKhMmgQwy9GjYH8ScfpitJSs/aef4HRhqTnF4J/y3fk2 7/qcJRT3UrIynjBwabXYfKtWdhKKKKBBRRRQAUUUUAFFFFABRRRQA6t/w1d+Tetbs2FlHGf7w/ya wO31qaCZ4J0lU4ZGDD6ipnHmi0dODruhWjUXR/h1LGqwfZ9TuEAwN5IHseR+hqjmui8SxpIlreIP 9auCfyI/ma5w0qcuaKLx9L2WIlFbXuvR6oSiiirOMKKKKACvt3wL/wAk98Nf9gq1/wDRS18RV9u+ Bf8Aknvhr/sFWv8A6KWgD4y13/kYdT/6+5f/AEM1n1oa7/yMOp/9fcv/AKGaz6APbfgfIh0vV49w 3rNGxHoCpx/I1558RInh8fausgwTMGHPYqCP0IruPgV93Xv+3f8A9qVx/wAU/wDko+q/9sf/AESl fPYTTOa0f7q/T/M7KmuGi/P/ADONooor6E4wooooAcBk471u6d4du55Y5LmIxW5ILFmwSvfjrVHS GSPVrVpPuiVc57c9ateIpZv7YnjeRiqkbRk4AwCOPxqTCpKbn7OLtdXua+q+J/IkNvYbWKnDSHkf Qf41laj4iudQtjbuiRocFtmfmx9fesTjPNJ36U7IilgqNO1o6rqJRRRTOoKKKKACiiigAooooAKK KKACiiigAooooAKKKKAOv8Fv8t4hPAKED88/0qTximbS2k29HI3fUf8A1qpeDmAvrhecmLP5Ef41 q+LF3aN1xtkVv0I/rUdTw6nu5gn3t+VjhKKKKs9wKKKKACiiigBR6V2+k2EMXhtxfIFjlPmN8xB2 8Yzj6ZxXI2bxR3kLzIXiDguvqM11Piu5lNlb+U/+jzcnH8XQj8KlnDjOac4Uo6Xd7+hx7Ebjtzjt k0yiiqO4KKKKAFrR0SJ5te0+ONSzvcxqoHclhxWd2ra8I/8AI56J/wBf8H/oxairpTl6MqPxI90+ JtzBY+GY7qZELLcoqk/e5znH4DOPb2ry/wAzTJH+2F7YsAPnJGR6fj+td78auPBlp/1/p/6Lkrwb JxjtXg5DR5sGpX6s9xZpPDN03FSW6v0Zq6xfjU75fLH7tflQdPxrsokEMMceRtjQLn2ArmPDumGa UXcq/u0PyA/xEd/wrZ1nUIrKzdCczSqVRR27ZNenVs2qceh6WXOVOlUxtd25vyX+fQ4mdg8zsM4L EioqCckmkruPkZO7uFFFFBIUUUUAFFFFABRRRQAUUUUAFFFFAHTXp8/wpay/xIQM+wyv+Fc2Rg10 FoRP4Uuo+C0bZHHQZB/xrnyaypaXXmejmD5vZz7xX3rQbRRRWp5wUUUUAFfbvgX/AJJ74a/7BVr/ AOilr4ir7d8C/wDJPfDX/YKtf/RS0AfGWu/8jDqf/X3L/wChms+tDXf+Rh1P/r7l/wDQzWfQB6l8 E7ny/EeoWvaW0353d1deMd/vH8qq/Ga18nxlFN8xWe0RskcZDMCAfoB+dZvwsuha+P8ATwxULMsk RLe6EjHvkAV13xxtAU0a8VR/y1ids/7pXj/vqvnqn7rOov8Anj/n/kdi97DPyZ43RRRX0JxhRRSg EnA60AOUncCK6DxJG0gsbwj/AF0Azj1AB/8AZhUUXh+SJElv7iK1jbBIZvnx7D1rQm8Ux2rJBZQr JBGgRWYkE4FScdSq5Ti6S5rXv2+85pbO4kICwSEnphTzVhNE1Jz8tlKP95cfzraj8YyA/vLNSP8A ZkI/oad/wmg/6B//AJG/+xp6kSrYv7NNfeZyeFtUbOYUT/ekH9KmTwjqLDJe3X2Ln+grQHjKAgbr Rwe+HBqZfGFkV+aGcH2Cn+tK7Od1sf8AyL+vmYr+FNSUnCxNj0fr+dQ/8Izq3/PqP+/i/wCNdA/j CyC/JBOx/wBoKP6mov8AhMrf/n1k/wC+hRdjVbH/AMi/r5nPnQtTB/48pP0pP7C1P/nzl/KtxvGa 7jixJHvLj+lRP4ymJPl2ka+m5i2P5Uamqq41/YX3mHLpt5B/rLWZfrGcGq4jdiAFJJ6ACt1vFmoF wwWFQP4Qpwf1zS/8Jhff88Lb8m/+Kp6nQp4hLWK+/wD4BiiyuWIAgkJPAAU1KNI1AnH2K4/79t/h Wr/wmN7/AM8Lf8m/+KqQeMrjjdaxE+oJFGpDqYnpBfeZf9hanj/j0k/Ki60W/sofNuICkecbtyn+ RrVPjKbtax/ma35iNS0B3cLmWHfgdA2Mj8jU3ZzzxWIpOLqxSTf9dTziilIOTxSYPpVnqBRRg+lL g+lAGnol39j1aCTPysdj/Q8f/XrpfF0wTS0i4y7j8gD/APWriQCCDXReKpGcWIZif3O78TjNS9zg r0VLE05+v4HNUUUVR3hRRRQAtFFWLS0mvbhIYULyN0FAm0ldi2drJeXSQQrudzgf412eraLcXlla WkLoBCuGd8jOAAOmfelt7ez8Nac08pVpiPmbux/ur7f/AK6y5vGNwzHyrWNfTexb/Co1ex5VSrXx FRSoL3Y9X3Mu48P6nb4JtmcHvH838qp/Y7gdYJf++DWmfFepE/eiH/AKP+Er1P8AvR/98VWp1xli kvein82ZP2S4/wCeEv8A3yaPslx/zwl/75Na/wDwlepf3o/++KcvivUUbJ8ph6FeP0NGpXPiP5V9 /wDwDNGlah/z5XH/AH6b/Cuv+Hmg3beO9La5tpEiiZpSxHAKqSP/AB7FVrfxhblQLm3dD6phh+Rx Xo3w0vLbVL+9ubdi3kRKjArjaWPH/oB6V5+aVnSwdSXlb79P1Fhq2JliIwlCyuZ3xuvgtnpNgHOX kkmZd3TACjI/4E35H1rzTR9Ea9/fT5SAHj1b/wCt711XxjvhceM4rdWytrbIjLnOGJLH6cFaZYMj 2EDR427F/DjpXNlydDL6aW71+93PqsuwtPFYuTqaqPTuUtV1NNKt1hgRfMI+QY4VfWuQuLia6mMs 0jO57mui8U2pYRXS5IA2N7dx/X9K5avToRjyXW5jnVat9YdKWkVsug2iiitzxQooooAKKKKACiii gAooooAKKKKACiiigDovDpMsF9bDOZI+Bn2I/qKwHyGIPrWloFx5GrQjOFkOw++en64pdetPsupy YGFk+cfj1/XNZrSbXc9Gova4OE19ltP56r9TJooorQ84KKKKACvt3wL/AMk98Nf9gq1/9FLXxFX2 74F/5J74a/7BVr/6KWgD4y13/kYdT/6+5f8A0M1n1oa7/wAjDqf/AF9y/wDoZrPoA1NEv20rXLG/ UkG3nSU9eQGBI47Yr3b4r2P2/wABTzId32aWO4XbzkZ2n9HJ/CvnfFfSehEeKPhdbxPh2ubBrdie 7qCmeR1yM59a+ezz9zWoYr+WVn/X3nZhfejOHdHzVRUkiNE7I6lWU4KsMEGo6+hOMXpU1vMYZ45A AxRgwB6HBzzUFFANXVmdH4hge5EWqwsz28yD/gBHGPz/AFzXP1u+G7/y7kWM4D28/wAhRumT0/Pp UWu6OdMuN0QJtpD8hJ+6fQ1K7HJSqezn7Cfy81/mjEoooqjrCiiigAooooAKKKKACiiigAooooAW um0jX4bDS3gnVpHVjsTsQeoJ7c5rmKUUNXM6tKFWPLPY6P8A4SLT/wDoB2/5r/8AE0f8JFp//QDt /wA1/wDia5yilZGX1Sl5/e/8zoz4ltlGYdIgQ9zxyPwUUn/CTj/oG235VztFFkH1Sl2/F/5nTQ+J BJMif2fajcwGdvqareKZnl1hoTjbEqhQB6gH+tZVmM3kIH99f51qeKVC605A5ZFJ/LH9KVtTONKn TxEeVdH+hhUUUVR2hRRT1UuwVRkk4AoAfHG8sgSNGZ2OAqjJP4V12jWo0O0mvNQxG7gBVyC2OuB7 k4/Ko5VTwvYRlI45LybI8w9AB1x3x0rmbu9uLyUy3ErSN6sen0Hap3OKXNiotR0h36v08izquqS6 pdGST5UXhEHYf41m0UUzrhCMIqMVZISiiimUFFFFADs1758G9N+y+EJbxlw17OzA+qL8o/UPXgig u4VQSTwAO9fS9248IfDRhkpLZWAjBB/5bEBQeD/fPY/SvA4gm3Rhh47zkvw/4Njrwi95zfRHgXi7 Vf7a8Wanfq25JZmEZznKL8q/+OgVe8L3gMb2jHkfOv07j/PvXLdantbh7S5SeM4dTkV7LopUlTWy Vl8i8Di3h8Sqv3+j3O/u7dbu0kgbgOuM+h7H868+miaGV4nGGUkEe4r0G0uUvLZJ4/usOh7H0rn/ ABLp21hex/dbAceh7H/P9a58PPllyM+hzzDKvRjiaetvy/4BzFKBzU1rA91cxwJjdIwUZrT1PQpL CMSq/mx9GIXBH1Fdjmk7NnzFPC1alOVSEbqO5iUUUVRzhRRRQAUUUUAFFFFABRRRQAUUUUASIxR1 YcYOa7HV7VdT0lLmPiRF8xcdwRyP8+lcXXZ+G7nztO8on5omx+B5H9fyrCvdWmuh7eTclWU8NPaS /FHGYoxWtrlgLK9OwYjf5l9vUVlelbRkpK6PJr0ZUajpy3Q2iiimZBX274F/5J74a/7BVr/6KWvi Kvt3wL/yT3w1/wBgq1/9FLQB8Za7/wAjDqf/AF9y/wDoZrPrQ13/AJGHU/8Ar7l/9DNZ9AC5r2n4 K635tlfaHIRuiP2mL1KnCsPoDt/76NeLdq3/AAhrZ8O+KLHUSxEaSbZsDOY24bjvwcj3ArhzPC/W sLOmt916o1oT5KikbPxR0IaN4xuJIlxb3w+0Jx0J+8P++sn8RXEV9CfFbQjrPhH7bCokmsD54K85 jI+fH4Yb/gNfPfOaxybFfWcJFveOj+ReJhyVH2Y2iiivUOcljcxyK6kgqcgjsa9IQQ6vpS+YoKTR gkDsfb6GvM66/wAKap8psJDgjLRnPXuR/X86mSPOzGlKUFUhvE5/U9Pl027aCQZHVWHRh61RP867 3xRai40hpSPnhYMOOx4P88/hXA9KE7m+DxDr0lJ7rRiUUV7R8QvCuh6X8FfCur2WmQQX919k8+4Q HdJutnZs/VgDVHUeL0V6nN8BfGUWofZVOmyL5fmCdZ2EZb5vkG5QS3y+mORk1ofDT4Qx65quoHxK 4SPTbpraWwim2yPIuCd2B/qyG4ZTk849aAPHKK7uw+Fev6n4ov8AQ7GfT7j7AsbXF8k5+zIHXcvz Yye44HVT6VV8S/DnXvC2mRanex28+nySGMXFrMJUB7ZI6A4P5Y60AcdRXqGl/ArxbqmiWWqQyabH HdokiRSzsJFRuQzAIR0IOASfbPFUrD4Qa/qHi/VfDcV5pq3umRxyTO8snlsHVWG07MnhhnIFAHnl FehXHwf8VQ6/ZaIi2c99cW/2h1imJW2TIB80kAA5PbOe2aZ4j+EniHw5osurNPp+oWcD7J3sJmkM PTlgVHqOmcd8UAcBRXuXij4L6fofw1TULbULZ9WiAurq5muCInRYnZo4AFw2Tt25GTjqM4rN8a+B nuJ/BmmWOjaRpNzqiSKs0F3JIJiFjOZMxLtxntu+8fTkA8for09/gV41S4vIY4LKY2wG1kn2ifKg /JuAPcjLADKnnisnwh8LPEfjWwub7TltYLaCQxb7qQpvcAEqoCk8ZHJAHPXg4AOGors/Fvw31vwX pNhqOrSWgF6dqQxyMZI227iH+UDI6cE81f8AhR4Bj8deI5EvXkGm2SLLceX1kJOFjz/DnDc+inHq ADitJ/5C1n/12T/0IVp+LEK6uCf4owR+o/pXsmjN4AvdXurHTPh5qc+m20rQR6tbQS3AMoPOSCSo 5BBJJwRkCrvgPwhoet+IfEMGsaR9pFolusCXsZWRAzTdRngkBc/Sl1OWaaxEX5M+bqK9o+EvgXw/ 4j8K6jqs1j/a+s2s2xLGe4MMK8KUJK8nPzdeOCMcZNH4qaL4d0nSrBofDF9oWuStmZVBe0cAYZVc tgkHBG0eu4cg0zqPJTUsUhSVHAztIP5V2Hwp0qy1r4l6Rp+pWsdzaTed5kUnRsQuwz+IBrrvEPwo u9f+KGv6X4bgs9PsrNIHRZy6RkNEmQpCtk7iSaBO2zOB8XSF723w2U8kMv4k8/oK5vtXpXi74c+J tM8K2mt3tpCtvbQolwqSgyRZIA3D6kA4zg57V0Xi/wCD2n+HPhfFqcF7DNqqNHNcXEk58t02Nujg AGGyxUjIyQpOR0pIyw8eSko9jxKiu60D4TeMPEdgl/aaasdpKoaKWeVUEgPQgZzj3xiuX1nRtQ0L VZ9O1O1e1u4Th43A49CCOCD2I4NM2M2ivZ/hl4E0AeEL/wAc+KY2vLK2SQxWijghAdxIONzE8KMg Dv7a8/hjwJ8RfA2r6t4S0m40y+0xXKo4EfmELvAIDMpBGQDkEHrx1APAaK7K7+HWr2fhTR/EElzZ Gz1a4jggRXfzFZwxBYbcAfIc4J7VpS/CDX4fGtv4Ua70w309mbxZBJJ5QQMy4J2ZzlT29OaAMr4b 6J/bnjSzRwDDbH7TKCMgqhGBj3YqPxr0P4060INIstIjf95cyedKB/cXoD9WP/jtdD4B+Hl/4HtL 2TVntGvLmXYogctiNM4OSB97OfptzzwM7RvDWk+OfEuv+LfEEryaJosjW8UGcJIIl3MWOfujO7Ax ndz3B+daeLzbX4aa/F/1+B2Jqnh9N5Hz7RXrWsah8JPEGlaq1nY3Og6jCn+hOFdhcHnA2KWVemDn H3s5PblvDPw08VeLbRbvS9PBs2JAuJZVjQkEjAycnkHoK+iOMytD1T7DMYpifIk6/wCyfX/GuudI 54WRgGR1wfcGsuw+F/iW68XDwzPBFYag0TTIbpyI3Re6sgbP4V2Vn8KfG+naUJpIrS7VWC/ZIZ/3 6DPXkBcYwcbs4I6dK5q1FyfNHc+hynNY0o/V8R8PR9vJ+RwNtocllrMLAl4NxIYdRgEgGuhkZAAr kbZDsAYcEntXT6z4H1bRPshujA8V1IsUcsUhZQx6A8A+v5Gp9V+DviW+tJ7eKWxEqAPHmZgJCOSB 8ufbJwMkc1i4zqSSkj1oV8HgqMpUpJp3aV99lY8q1rQvKD3VsP3XVk/u+49q52vaLf4e+KbPww+o 6pBCrQhvNh8zdKijuwHHTngnjmuT134banpuk6frv2iy+xapdJb28as/mIzhiNw24AG09Ce1dNKU k+SfQ+fzGlh5RjicO9Jbrs9zgaK9El+EGvw+Nbfwo13phvp7M3iyCSTyggZlwTsznKnt6c0zUfg7 4t0zw/eaxcWtv5VoGaaJZsyKi9X246Y+brnHatjyDz6ivXb3wX9u+G3hVodL0XT59Ru44hqj3j73 ykp/eL5QCg7eoZug9eLfxA+FFh4TXRZ9NngnjEscVxHdzkTXLs4wQoXATHHHQepoA8Xor1fx94Ev 7r4i6doGjaBYWFzcWKyi3sbppYsB5MyM7om3hemOwxknFZOufCHxNomn318RY31tYjNw1jceYUA+ 8SpAbjnPHGCelAHn1Feg6X8J9bv9DstUu9T0TSYb8j7ImpXZieYEAqVAU5zngZz7dK4/WNKn0TVb jTboxNNA21nicOjcZBVh1BBBoAzqKKKAFPStrw7ci31IIxwso2n69v1rGqSN2jkV1OCpzmplHmi0 b4as6NaNRdGdvrNiL+xYKMyx/NH7nuPx/wAK4QnrXotncC6s451x865IHY9x+dcfrtl9k1F9oIST 5l/HqPzrmw8mm4M+gz3DRnGOLp7Pf9GZFFFFdZ8wFfbvgX/knvhr/sFWv/opa+Iq+3fAv/JPfDX/ AGCrX/0UtAHxlrv/ACMOp/8AX3L/AOhms+tDXf8AkYdT/wCvuX/0M1n0AFFFFAH0N8LfEI1/wmbK 6xJPY4gkDDO+Mg7CfwBX/gPvXjfjLQW8N+J7zT1VhAG3wFu8bcr9cdM+oNXfh94l/wCEa8U280r7 bO4/c3GegUnhv+AnB+mfWvT/AIt+GG1XQl1a2j3XVgCZMdWh6t/3z1+m6vm4/wDCfmbi9KdX8/6/ M7X++o36xPAaKKK+kOIWpYJngmSSM7XVgQfQioqOhoBq+jPRdYcS6BPION0efzxXnVelafJDqOjR /dZWi2OvocYIrgtSsZdPvHgkB45U/wB4djUxPJyySi50numUa9o+IXirQ9U+CvhXSLLU4J7+1+ye fboTuj22zq2foxArxeiqPWPpHX/H3h25+MHhLUYNdgfTLSC6WeUOdkbPGwGfqdv5D0rF8J+PdC0r 41eJb24vohpepBhHeD7gZcMM+xAYfXHrXhFFAHuPw78S+G/BWoeJPC0uvQXFldIj2mqfZ8Qu/lHe HUlsYJAAwQdrZ6gVneMvEkNt4Dm0S08UaLeRXcq50/SNJEMagMr7i+4BeVH8JJ/Mjx+igD6jW98O 634l8EXt4ur6ZrduhjgsZdPlh875QD8zDZsXk/KTw1VbTxJo/hv47+MptZ1CGzjmtrVY2lJAYiKM 4FeQ2Xxf8dafYW9la66Ugt4liiU2sDbVUAAZKEngdSa5DUNQu9V1Ce+vZmnuZ3LyyN1Zj/npQB2v wzk8LXfjK7uvGr27W5geZDcAhGnMi9QvB4LfKQR19BXpWqeLfDI+GviTQ4de0E3UiyNb2+nWbW0I UhSEUYIZjg856nB6V86UUAe3634i8OeL/gfpOlPrlvYappUaP9llQlpmhiaMKMdNwIIPPpj00vEH jTw3deJvhrcQavbPDp3mfbHBOIcpEBu/FT+VfP1FAH0Jo/jnQIvj34i1efW4F0ibTkhgnZz5bMBB 8o/ESfrVPRNa0TV/hV4j0fXJdQsNNOpPImpQWEssTKZVcAuqld27jDEfeXHt4PXT+G/HvibwlaTW 2haobSGZ/MkTyI5AWxjPzqccDtQB618efLHgTwr5JcxbhsLgBivlDGcd68++FPjqLwL4oee8WQ6b eIIbjZyU5BWTHU4549GPU4rA8SeMNe8XzW8uu6g141upWMFERUBOThUAGTgZOM8D0rnqAPo3w1qn g7w34hk1DSPHk0mlXVxLcJokdq5zI6nrxnAwMZAxtGTVrwn478P2HjnxdfanqMdjFefZmtxccFgv mZ6Z/vD868C8MqTr1uQMgBif++TTvFDhtclUZ+RVB/LP9aXU5XUbxKp9Er/idx8O/wDhB7nw9eR6 vqDaF4ijkza6pHPKrBTgggKwXIIII44I/DZ+JvjbR7/4d2PhqLXx4i1WK5WSa++zGMBQGIPpuwwX gngNk56+JgE9KSmdR6Z8G0tbHxpZ6zfTJFb25lQOxICkxMMn/voD8a9N0b4j+Go/ih4juLjVbWLT pYIBBdFjtlYIu4Djscj8K8c0UfY/C08zfxiRxzjttH8q4s9c0kclGTq1J82qi9PuPc7Px1o938Ed Z0+81KCLVZ/O2WzMS7ZYEc9yeeah1vxF4d8X/BDSdKfXLew1TS40f7LKhLTNDE0YUY6bgQQefTHp 4jRTOqMVFKK2R9Dz+JvBXi1vB2rz+Kk0mbw+VllsZLdyXYeWSob0/d4yN2QexrzH4r+JNO8VePLn UtKlMtn5UcSSlCu/C8nBAI5JHI7VwtFAz2f4aeMfD0/gHVPA3ii7FlBOJGt7l+UAbHHsyt8wzwfw 51Brvg34dfDzW9N8O+IG1jUNT3IpQYMZZNu49gF5PqSQK8EooA940fxV4K1n4XaBpeua0dPudGuY bh4hC7s5R2AAwOdyE9M7ScnpzvjxToer/tAaVfadqUNzbf2O1v5keSPM3yNt6ehzXzTXtfwc8MNb 203iG6jw0wMNsD/cz8zfiQAPoexrizDFxwmHlVe/Rd2a0abqTUTs/iX4o/sDQL26hl/0u5doLYjq Cc/N+C5P1x615v8ACHx9pHhuHVtD8RsyaVqK7vNCM6o20qysqgthhgZHTHvkZHxW8Sf214nayhfN pYZiXB4aT+M/mAP+A1wOK58nwrpUOea96b5n89kXiJ80uVbLQ9k1G2+FPhnwbq8Vjerr+o3oJsvN Q+ZAcEL8ygbcbtx6bsAY44s22teEvGXwr0Hw3f8AiVdBvNMmV5fMgZ920OoKnIHO/Oc8c8dK8Qor 1TnPo6f4meF9Q+MWm6jDqIXTbKwlge7lUqjOxzhQRn2zj9OaytG8baLb6X8TvN1qNLnULi8bTyXO 6UFHEZQ/98gfhXg1FAHtWp+LdGPwo8Fadb6rF9ustQt5LmFGIaNAJNxPtyPzrp73x/4ek+Nemagu uwNpEOksjS7j5azF3yPqRt/Svm+igd3a1z37w34w0QRfEWOfVofN1K+uDZBmJM6sHVNvtyoH4Vcu ta8Lap4A0K01zWf7OOkX0Ny8YgeRpdhcBFwP4lPUZ2968K0GAzatFxwhLH8P/r4rd8T/APIKH/XU fyNYTnaqkj2cPhFUy+dSXR3XyX/BPW73xx4Yk+Oum60mtWp06PRTA9yCdqyb5Dt6dcEfnWRpXjLQ 10b4ox3Grw+bqc94bIOxJnVkdU2+3KgfhXhFFbninrfi7xJo198CvDGi2uoQy6ja3MbzWyk7kASU En8WH51q/ETxD4b8XL4b8Swa9DHeWrQrLpxjO9QzhnJbPG3B7H614fRQB9Fan8TPDll8arHWYr9L jTJtHFjNcQqWETGZnyeh4wueDwelU9Z8W2emW/iG90zxh4fVb5nK21jpCtcXQYtgSvlPmG7ljnqx 9j4DRQB7r4H8YWVt4OtLK78ZaZOkeBPpes6YzLBH02xsp+c8HHJGGGQDxXm3xEvfD2o+NL248MQp FpTBAgii8pCwUbiqYG0Z7Y9T3rk6KACiiigAooooA6zwrcFoJrcnlSHX8ev8h+dP8VQbraCcfwMV P4jP9KzPDDEaoQDwyEH3ra8Sf8ghv99a45e7XTR9XQl7bKJRl9m/4ao4miiiuw+UCvt3wL/yT3w1 /wBgq1/9FLXxFX274F/5J74a/wCwVa/+iloA+Mtd/wCRh1P/AK+5f/QzWfWhrv8AyMOp/wDX3L/6 Gaz6ACiiigB3NfQHwr8UJrnh/wDsu6cNd2ShMH+OHop/D7p/D1r5+71t+GteuPDeuW+pW5JMZxIm cCRD95T+H64PavPzTArGYdwXxLVepvQqeznfoanxA8LHwt4ikiiU/Yrgebbt6L3X8D+mPWuQr6X8 RaRYfEDwgjW0itvXzrScDG18Hg+x5BH9RXzjd2k1hdzWlzGY54XMciHqrA4IrHKMe8TR5Knxw0f+ f9dR4ilySutmVaKKK9Y5zU0vV7jS3PlndG33kbof8DXUXawa/oJuVTbKqsy+qsOoz6GuF5z9a6qw nax8ITuxOZXZI+vcAcfkxqWjgxdFJxqQ0ldHJnrRQetFUd4UUUUAezaTonhvwV4S8O6hqPh//hIf EfiAh7OzmfbGikrtGOQc7k6g5yRwM1BDpd5d/E7wsNe8EafokV1OyNbxW4WG5C9cxkkcArn1696r 6Z4v8NeI/Alj4a8UXlzpl7pUmdO1S3gMgjXHG4A7vwGPurzkVq3vjbwxBr3w/ih16TUbbQnm+2X8 lrKm4Nswdpyx+6fWgCx4V8J6Fqnifx6ItGs9Q1fTL+Y6fpk8nlQGMSOMBRgdgvPyj5emc15T4rlm m8Q3K3ei22jXcZCTWdtEY0V+5CknGc5646Y4rq4pvCmqeLPEeqz+Lb7QrqXU5riwvILaSRXiaQsD hQHVucjkVS+Jvi3TvFeraYdOa4mgsLFLU3d2gE1wwJJZiDz1z25LetAF7+yLPxD8INHn0+xto9Ws 9X/s+4mSNVeVZclGcj5mALIo4J4NdN8TNA0XUtLSLw3pFnZz6ZrY0eRoIlV5N8SEPJsHI3gqCcnP TkkVg/CDxdofh+51Ky8SXBh0y48i6jO2RgLiGUOmAgJ64PodgB9KufD3xxoCav4gk8VXjW8F7qMG qW7mN32zxzNJ0jU9cjPQcUAM8beDl134harp3h6307TtL0O1iS5uXCwQR8AlnZV5bLN1yTsPpWZZ /Cm9L6ddTalp93pV9OltFeWExkTzGbaAcqCOfbtipvD/AI2027vfGFjrS3EFn4nl3/abePe9u/mM y5XOSuHPAJ6AAHJrobnxR4d8H6Z4X8KWF+97b2+rwahfag9u0aoiyhiAnLZ49+B3J4DOevup2bL3 hn4Zw+G/ifpPmX1jeASTJLZFg7ovkPtZlI4zwQD6g15/4k8C3Ol2VxrOpXMNjJeXki2Gnsp86dd/ 38dFTnqfb1Geh0zxzpcXx7uPEcuok6NNLIDceU5ynklE+Xbu67R0rZ8YXOleOvDjJqF2sOu2Ez/Y rv7OxF1BkkIzKDg46ZxyAeNxwiFUjS0qS9L9jgfFnw9Pg21dNU12wOqhEkWwgWRmZGbGd5UDjn8q 9G+I3wzk8QePHSwvtKsJ7i3X7HZyEobjYMyEBQduBnGeuG7AmrGp32mf8Ie+nz69P4jv/PVrae8t Nstqg7byMscZBOTnJ6Vq3fijSZfijZ6yt4Tp0UJRpfLfg+Wwxtxnqw7d6LmE8fTjKyaeq69/8jyT wT4L1S7u73UGe1trGwka2nubiTZH5v8AdUgEsenQdx61e1T4Y6ve+PdO02S4tI4dZR5LS8jfzInE cW5umD2Hb+IV12hXmlRaHq/h6+vZYYLvUnvoLxINwXPGHUEE/dHPv2wK6TTL7SdQ8b+ELPTWkuF0 iK4RLhwU3tJEQxC9f4e/r7ZpXVzOOIpOv7RO90l579jhdM+GM+jabqF4upWF7e2n/HzbQNueBRnd z04749COorI0vwxZ3njDRZBFFsN/B58Ei7o5U8xdwIPHIzx0NdNqfjbwzpNt4vuLTV7yfUdUjmtY 9Oe1MbW7sWBcyZKtgknrnGBjOTXD+G/HMkPiLTLnV9rIl5FJNcjIKqJAWYqAckDnAHP1osE6Fb2n toO3dHrHjLw5pp1rRbjStPtU09dZttPv7SOFRGo81SCUAxtYEA/UeprzTxD4JuNZ+I3ia20mKx0/ TdOl3zTSkQ29shwBkgYHcgAdjiu2T4gaXpvj5tUluRP4a1GT97J5bkKy7XilCYzlWTHTIyeMisD/ AITnw1ca/wCObG8vLhdK8ROnk31vbkmPZnBZTtbHPTH8zTOrDWcW0rXbv+Rycvw41CC70fff2Eul 6tcLawapayGWASHja3AYHORyB0PoaF+HeoDUfFNrc3McEXh2J5J5mQkSc/IFHq4GRk1q+LPEXh2x 8A6X4R8Nalc6k1tfG+l1AwtAofawCqrfMPvfht6nPGp49+IGh614Kjj0t/8Aid6x9nfW/wByV5hT AXO0A/Nggg9F7ZpnQYGmfDCa907TZbvX9M0+/wBUjEmn2NyWDzq3CHOMDceB17VRs/h9ql14VvNc e4trSOy1FrC7iu38swFVBLNnrgsF2gFs9BXoWk/E6C60DSLWHx1c+F5LGyjtZoH0VLuOVkUDejAE jI7H04A78pdeK9Nufhbr2lXOpfadZvdfa+/1DJ5yEJmTgbVyQ3y549KALP8AwpPWI72Oym1nR47u 7JGnReazfbVVd7MpCnaAvcjr+BOl4U8Lw6x8E9Xt7u4stNkg1s+fe3mFEKLHFlc9eWOAB1Jqy/j7 w43xa8I63/ahOmafpAt7mXyJcRy+XMCNu3J5dOQCPyqv4e8ReFdQ8A+IPC+p6xPZzatrLzQNDaST EIfLKMVA5BZMbc59u9AGFF8KNQPjTS9Eju4L2yvoFu0vrU5QwZ+Zhnv27/eX1r1rx7K/g74f3E+j KrLCEtUMKnFsG+UOfTHQH+8R610OlNp/hfQ9OtROZLTS7Uq1zIgQ4xlmwfujjoa8k+JPjq217Q7y LTfHX2y0uWiH9jnSDEQoIbJmIzkMoPH06V4rVHMq2usYP5dP667HSnOjHs2cr40+Gt74LSeXUdX0 6STcvkQLKfPnU4zIEPRQSRknOVPGKyvAsfhyXxJEPEiXM1rgCG3gHE0pYBVc5BC8knHp+ep8XPEO l+J/HcupaPdfabRreNBJ5bJkgcjDAH9K5HSZo7bWbG4mbbFFcRu7YzgBgSeK9o5jufiH4aF58aL3 w9oVlb2/nS28cEMMYjjQtDGScKMAcljgeprrPiroHhrSPhjYxaJZWn2iy1RNPuL1IFWWZ0ik8zc4 5PzDkE9R7Cud1/4kx6Z8X9X8V+G1s9QiuIY4oZLuCTaB5UasyjKsrZQrn0J9al1v4g6Rq/wkj0oW OmxatJqLSSWkUEwWJSr/AL5WZiN5JA5Y/ePFAHm0Wl6hcW/2iGxuZISCfMSJiuB15Ax2r1H4JaZ4 Q1PVzbarZPqGsSGQxwzxK1tHEqg7iD95iSRyOPbrXnVt4o1+xsBp9rrmp29kFZRbRXciRgMSSNoO OSTn6muj+EfiHS/DHjuLUtZuvs1otvIhk8tnwSOBhQT+lAGx8ItJW90zxVqC6Vpep3lnbwJaQalE jxmV2bHLkAfdx1HUVhfEaHWbfWLe31rwxpWgypEdiabbiKOZSfvZVmDH8eO9ZPhnTfDmpC6j17X5 dGZdhglWza4Ruu4MFIIP3cfU16Fdf2X8TvEvhrwfotxdjRNFtJFa/uAPMKhVy2D0HyIo+vQAUAcL 4ViXZcTH73Cj2HU/0rplvLCwilutQ0WLVkjTMVvLM0aB8j5jt+9gbuD6+1czo1zb2+s3dnbStJaO 7CB3GCwUnaSOxK16R4Kl8P22sm68QTbYoAHhQxs6u+e4UHp1xXDUuq1z7HB8lTKnFJvRppb3/qxT 8beFLK8PgVDpNlo+u65Jsu7WxBSNUZkCtt52EBvT+8OdtT3mk+F9fh8caRa+HbfTZvDkM0tveQux kkMJYEODwQ239fWqvjDUrK18baZ4zPiqbVriLUIW+xRWD24itlYsVR2bGO2O+8k96k1LxL4O0S38 Z6louvy6ne+JI5IhaNZSRfZ/NLFyXbAbG44x7deTXammro+RnTnCXLJWfmSaNpHhzTr3wf4W1Hw1 bX0+uael3c3skrLLH52/aFxjG0KP8e9YGhLZaL4wu/Clp4VsNd1T+1ZbWG71F2ZPKVtmDGPlGArt v5xnp8tdBp/ijwVfX/hPxRqfiG6ttT0PTo7WbT2snla4eINgiQfKNxYnk+mcc07wV4t8HWQ13xHe azHpfirVbmd45ZbGW5S0R33fKqjBJyerdh2yCyDhvinpWkaL8QtS0/RY1itIvLJiUkrG5QFlBJPc 9OxJHauKroPFkGmQ6y0mm+I319bhTPPePavAxlZm3AhyST0Of9r2rn6ACiiigAooooAKKKKAN3wx GW1MsMYVCT/L+tbPiVtukn3dQP1P9Kz/AAnHmW4lwPlVVzj1/wD1VY8VylLOCHszlvyGP61xz1rp H1OG/d5ROT63/F2ORooorsPlgr7d8C/8k98Nf9gq1/8ARS18RV9u+Bf+Se+Gv+wVa/8AopaAPjLX f+Rh1P8A6+5f/QzWfWhrv/Iw6n/19y/+hms+gAooooAKKKKAPSvhf42/sO/XSL+b/iXXTjY7HiCQ 8Z9lPGfTg8c11HxX8FHULdvEGnw5uoV/0pFHMiDgNgd1HX2HtXh4r3H4afEJNRih0LVpdt6oCW87 t/rx2Vif4/T1+vX57MsNVw1ZY7DLVfEu6/r/ADOyjUjOPsp/I8N6UV6x8Tfh99hZ9c0e2xanLXME f/LI/wB9R/d9R2+nTyivZweLpYqkqtN/8B9mc9SnKnLlYmOa6C/XPhPTimdoZg3+9k//AF65/PNd FopXULG40qUgbx5kJPZh1/z9a3Zx4jRRn0i7v02OdpKnngktpnjkQo6nDKe1Q96Z0Jpq6EooooAK KKKAFqxaRrNdxRudqPIqk+gJqvTlYowZSQRyMdqBNXVkeh3ltp1jYjzLOMwBgGwoO3Jxn1rPl8KW FyqS2tw0aPzx84I9u/8AOrgkXXPDsm05kdMMB/eHOPzxXM6Pr0mlq0ToZYTyF3Y2n2qFc8OhCu4S dOT5ovVd/vNe8aw8NRqttAJbphkNIclR6n/62K5W7upb25e4nbdIx5NPvryS/vHuJOrHgZ6DsKq9 McVSR6uHo8keaesnuxO9btj4lvbKBYSEkRBhQ4OQPQEVhUUGtSlCouWaudK3i+7LfJbwAehDH+tS QeMZlb9/aoy/9MyVI/PNctRRZGDwOHatyHdDxZpzIWYTKw7bBz+tMk8bPZJHcaRNNb3o6SrwY8jB we/BI/GuIopcqM4ZdQhJSV9PMlmmknmkmlYtJIxZmPUknJNQ0UVR3HS2OZ/Cd7G44jcOhPOOmR/n 1rm8dq7fw3BHcaBLAzcSu4bBGRkAcflVK/8ACbxoXs5TIf7j4Bx7H/8AVUpnn08VThVlTm7anKUV IysjFWBDA4II5FR1R6AUUUUAOxxXsnwo8EBUTxJqUIJYf6FG46c/60j1/u/n6Gsf4aeADrU6axq0 B/s2PmGN+PPcH07oOc+p49a6/wCI/j+LQbSTRtKkB1KRdrvGeLZT/wCzEdB26+mfnsyxlTEVPqOF 1k/ifZdTso0lBe0qbdDm/iv43+2Tt4f06b/R4W/0t0biRx/ACDyB39x7V5PQTmivZweEp4WiqVPp +L7nPVqOpLmYlFFFdBmFFFFABRRRQAUUUUATwytDMkqHDIwYH3FehQSrcW8cq/dkUMPbNecDPaux 8M3Pm6eYCfmibj6Hp+ua5cVG8ebsfRcPYjkrSpPaS/FGrc28d1bvDIMhxj6e9cDd272lzJC/VGI+ vvXolcx4nsm3rdquVxhiB09M1lhp2lyvqeln2EVSkq0VrH8v+AcxRRRXefFhRRRQAUUUUAFFFFAB RRQOtAHZ+GIgmmNJxl3P5AD/AOvWX4om336Rr/AgB+pOf8K6HSIvJ0m2X1Td+fP9a5DWpPN1a5bO cPt/Lj+lclL3qzZ9TmP7nLKdPvb8rv8AEzqKKK6z5YK+3fAv/JPfDX/YKtf/AEUtfEVfbvgX/knv hr/sFWv/AKKWgD4y13/kYdT/AOvuX/0M1n1oa7/yMOp/9fcv/oZrPoAKKKKACiiigAqaKWSGVJYn ZJEYMrKcFSOhB9ahooA9/wDh78QovEMC6TqzouqKuFY4C3K4/wDQvUd+o9uT+I/w4OltLrWiwk2J +ae3Uf6j1ZR/c/l9OnmcUskEqSxOySIwZWU4KkdCD617x8PfiFF4hhXSdWdF1RVwrnAW5XH/AKF6 jv1Ht83isLVy6q8XhFeD+KP9f0vQ7adSNaPJU36M8CqSOV4ZFkicq6nIYdRXtvif4a6ZbNLqWn2O 6EZeSCMuSvrtUdR7Afp04ePUPDtuxRfJRhwcwNn6fdzXs4THUcVT56bv+a9TysTWnRk4OnJ/LRmd Hc2PiBEivVaK8VcCZRwfr/8AX/MZqheeGtQtSSsfnx54aPkn8OtdemtaY2At3EPTJxUyX1mzYW6g c9cLKp/rXRc8lYutTfuQaj2ev3djzN1ZDhgQR1BFMrvtSs7DWJWt0eNblU3rIuDxnGDjrWWng2Qo TJdoG7BULD8+P5U7nowx9JxvU919jlu1B6Vau7KexuDDOhVh37Eeorfj/s3R7C3e5tRcXFwnmfMA QAeg56flRc3nWUUnFXvtY5Ydcdq7iw0HTbG2W6uWjl+UMXcjYM+g/wAay3h0zXExZBbS8/55EYR/ pj/PtTtG8xxd6Ld5BdDsVz91hzx/P8KTOXEzlUho3G2662Nf+39GtU2wOuP7scZA/kBXCyMHkZgM AknA6CiVDHIyNncpII9DUdUlY3w+GhQu4tu/cSiiimdIUUUUAFFFFABRRRQAUUUUASKzIwKsQR0I NbmleI57JwtwzzQYxgnJX3BP8qwKKVjOpRhUjyzVzsLnVPD92d81s7u3XCYb8TkfzrL8Q2VraS2z WkZjSWPdgkn+dYgPINdnqGiz6rLZsrqkKwICzHODznA/Kp2ONxhhZx958uu7ON5wea7z4e+AJvE1 yt/fK0WlRNycczsP4V9vU/gOenQ+GvhVbXrRXN+JxajkgttMn0AGQPfP0rrvGXjOw8EaXHY2McRv jHttrVRhYl6BmA6D0Hf8zXh47M51J/VcHrN7vt/wfyPXwsIzj7WekfPqM8e+N4fB+mx2OnpEdQlT EMYA226DgMV/kOnB9MV8+3FzNd3MlxcSvJNIxd3c5LE9STT76+utSvZbu8mea4lbc8jnJJ/z2qpX fl2XwwVOy1k933/4Aq1V1JX6CUUUV6BiFFFFABRRRQAUUUUAFFFFAC1o6VqLaddiQLuQ8MvqKzqX 6Ck0mrM0pVZUpqcHZo9IimSeJJI2DI4yCKWSNJYmjkUMjDBHqK4aw1a609v3bBo85KN0P+FdTYa5 a3uFJ8qT+6x6/Q968+pQlDVbH22DzbD4qKhU0l2ez9DmtW0iSwlLKrNAT8r9cex96y/TmvS2VXUq 6hlI5BGQa5vV/D6hWuLJTxy8f9V/wreliE/dkeTmWSSp3q0NV26r07nLUUpBBwaSuo+bCiiigAoo ooAWhR8w+tFTW67541xnLAY9eaTKgrySPRIkEUSRjoqhR+Fee3rl7yZz1LsT+dei15rKxaVyepPN cuF3bPqOInanSivP9COiiius+VCvt3wL/wAk98Nf9gq1/wDRS18RV9u+Bf8Aknvhr/sFWv8A6KWg D4y13/kYdT/6+5f/AEM1n1oa7/yMOp/9fcv/AKGaz6ACiiigAooooAKKKKACpopZIZUlidkkRgys pwVI6EH1qGigD2XwX8Wtxi07xGwB4VL4cemPMH/s35jvXR+LvhzpXiqH7fp7xWt/IN4nj5jnB5yw HXP94c+ua+ecGuz8IfELU/CriEk3dgfvW0jEbfdD/D/L2714GLymdKf1jAvll26P+vuOuniFJclX VHPazoepaDfNZ6lbPBMOQG6MPVT0I+lZoJ9TX0xa6h4X+IukNAVS5QfM8Eo2zQn14OR9QfavL/F3 wp1DR2e70gSX1lkny1GZYh7gfeHuPyrXB5zCcvYYlclTz2ZNTDNLmhqjz61uprSdZoXKuhyCK3o/ GF0qAPbxMR3GRXNsrKxVgQRwQe1Nr2bI4auHpVf4kbnSP4kivFCX9jHKA2QVYqR/n6iszVNROpXQ lEYjREEaKOyj1/Os6kosEKFOD91EquyOGUkMDkEHkV12nTJrPkzbguoWxBb/AKaLnn+v+TXHdun4 1Nb3UtpOs0DlJF6EUmhV6PtI6aNbF7xAETW7oR/dJB/EgE/rmsqpp5pLiZ5pG3O5yxPc1FTRpTi4 wUX0Q2iiimUFFFFABRRRQAUUUUAFFFFAC0UD2Feg+FPhfq2vNHc34ewsCclpFxI4/wBlT6+p4781 jXxFLDw56srIuEJTdoo4zTtOvdVu0tLG1luJ36Rxrk/U+g9zwK938E+AX0W2SbWZ/tVxsGy24McP t/tH9Pr1rUji8L/DnRuWitEbPzOd005H6t26cD2rybxh8UNQ8RK1nYK1jpx+8qt+8l/3iOg9h+JN fPTxOLzR+zwy5KfWT6/15fedLo0aavVXM+x23jT4rW2leZYaEY7m85V7jO6KI/7OOHPX2B9eRXiV 7e3Oo3ct3dzPNcSHc8jnJY1WzQK9rA5fRwcOWmter6swq1ZVHqJRRRXaZBRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABSgkd6SigDotH11rcrb3OWiz8rHqv8AiK6sEMAQQQehHevNOc12HhzUftFt9mkb 95GPlz3X/wCt/hXHiKStzI+oyTMpOSw9V+n+RmeI7D7Pe+ei4jl547N3/wAfzrCxnvXoGqWgvdPl ixlwNyf7w/zj8a4A5Bx6GtaE+aNn0PPzrB/V8RzR+GWv+YyiiitzxwooooAXNaehwmbV4B2Vtx9s c1mgV0XhWINczykZ2qAPbJ/+tWdV8sGzty6l7XFQh5/lqdBqM32fTp5c4whGfc8D9TXnvJNdb4ou RHZxwA/NI24/Qf8A18flXJDI6Vlho2hfuejxBW58Sqa+yvxeo2iiiuk8EK+3fAv/ACT3w1/2CrX/ ANFLXxFX274F/wCSe+Gv+wVa/wDopaAPjLXf+Rh1P/r7l/8AQzWfWhrv/Iw6n/19y/8AoZrPoAKK KKACiiigAooooAKKKKACiiigC3ZX91p10l1ZzyQzxnKyI2CK9c8LfGONkS18RxlXHH2yFcg+7oOn 1X8hXjNFcmMwFDFxtVjr36r5mtOtOm/dZ9LX2geE/Hlj9qVYLgsOLq2YLKp9z/RgfpXmuv8Awe1j T8y6TKmow8nZgRyKPoThvwOT6VwOnarf6TcfaNPuprabpuicrkeh9a9J0P403sCpDrVil0BwZ4CI 3PuV+6T9NteN9SzDA/7rPnh/K/6/VHR7WlV+NWfc80vtOvdNuTb31rNbTKMmOVCrY9cGqdfStn4q 8H+Mrb7K89rKX4+zXiBWz7BuCeM/KTWTqvwd8PXrl7GS4sGP8KN5idPRuevvWtPPoQfJi6bhL8P8 yZYRtXpu6PAKMV6ff/BXWYCxsL60u1HQPuic/hyP1rl73wB4qsTibRLpv+uCiX/0AmvTo5jhK3wV F99n9zMZUKkd0cvRVm5s7m0fZcW8sLf3ZEKn9ar49q7E01dGQlFFFABRRRigBcUVNDBLcSCKGNpH PRUBJP4Vt2XgrxLflRb6Le4bBVpIjGpB6Hc2BionVpwV5yS9WUouWyOeor0nTvg1r90VN7Pa2SkD ILmRx+C8frXXaV8GNFtWD6jeXF8R/Aq+Sh57gEn06H1rza2d4Kj9u78tf+B+JrHDVJdDxC2tp7u4 SG2hkmlc4SONSzMfQAcmu60D4S69qrLJqCDTbY8ky/NIR7IOn44r1abVPB3ga2aFZLKyYdYYBulb 6gZbt1P51xGt/GtiHi0XTwD0We5OT9Qg/qfwrheZY/F6YSlyr+Z/1b8zb2NKn8crvsdlpXg7wp4M gW+dIVlj63t64JB9RnhT16DNc14m+Mlpbq9v4fh+0TdPtUykRr7qvU/jj8a8k1bXNS1y6Nxqd5Ld S9i54Ueijoo9gBWZWtDJIyn7XGTdSX4f1/ViZ4ppctNWRf1HVLzV7x7u/uZLid+rOcn6ew9hVCii veUVFJRVkcjd9WJRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAC1d0y7NnexS54B 5+h4P6VTxmjHek1dWZpTnKnNTjutT0sEMAQQQehHevPtQQR6jcIM4WQgZ+tdpo8pl0i2ds527efY kf0rjdV/5Ct1/wBdW/ma5MOrSkj6XPZqrh6VRddfvRRooorsPlgooooAcecV2nhy38nTPMIIaRi3 Pp0FcailpAo5JOBXeXLrpmkEjAMUYVfdug/WufEO6UV1PeyOEYzniJ7QRyuvXX2rU32nKx/IMe3X 9c1l5xSlixJPem1vGKikkePXrSrVZVJbt3EooopmIV9u+Bf+Se+Gv+wVa/8Aopa+Iq+3fAv/ACT3 w1/2CrX/ANFLQB8Za7/yMOp/9fcv/oZrPrQ13/kYdT/6+5f/AEM1n0AFFFFABRRRQAUUUUAFFFFA BRRRQAUUUUAFFFFAC963dM8W6/pCotlq11HGmNsfmbkGPRWyP0rC6UZqZ04VFyzSa89RqTTuj0rT fjNr1sgS+trW8UfxFTG56d149e3eupsvjZo8ij7bpl5A3H+qKyj35JX+VeGUV5tbJMDV1cLemhtH E1I9T6Ptvih4PvlMcuoGLeShSeB8EY7nBGPqal+1/D2+And/DkhYYzMIQ3HqG5r5spK4/wDV6jF3 pVJR+Zr9ck/iSZ9Jnwv4DZiTZaVz6SKP60N8MvBszGT+x1O/5vluJQOfTDY/KvmzNLn6/nS/sTEL 4cTJff8A5h9ah1gv6+R9JN4Q8C2x8l7DTUZPlKyS/MPrls/nThF8P9PIQjw7FJFyN5h3r3B55zXz Vn3oyaayKo/jxEn/AF6sPrSW0EfSMvxG8F6ZEY4tSiwBuEdtAxB/JcZ+prIu/jR4fh3LbWl9cMCM EoqKfxLZ/SvBacPxqocO4Razcper/wAhPGVHtZHqGpfGrVpwVsNPtLVT3cmVh06Hgevbv7VyWpeO vEuqlhc6xchD1SJvLUj0wuM/jXNdaK9Khl2Eofw6a/N/e9TGVepLdiEmiiiuwyCiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKVfvD60AjvNEXy9Gt1YjhSc/Uk1xd zL5t1NIerOTn6mvQI44mtFiQhotmwFW6jGOoqidA0wn/AI9R/wB9t/jXDTqxjJt9T7LHZdVxFGlT ptWiuvojhaK7r+wNM/59R/323+NH9gaZ/wA+o/77b/GtvrUOzPK/1fxH80fv/wCAcN9BWja6LeXg DJEVQ/xv8o/+v+FdVFBpNidy/ZkI7lwSPpk5pJdd06If8fG8+iqT/wDWqXXk/gibUsnw9PXE1V6J /qUrDw4ba4jnmn3MpDBUXjI6c/8A1qg8T3isY7RGztOXx2PYfzqW58UxBSLeFyxHDSYAH4DOa5eW V5pDI7FixySfWnThOUuaoTjsXhaNB4fCfa3ev6kVFFFdJ88FFFFABX274F/5J74a/wCwVa/+ilr4 ir7d8C/8k98Nf9gq1/8ARS0AfGWu/wDIw6n/ANfcv/oZrPrQ13/kYdT/AOvuX/0M1n0AFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUALub+8fzo3N/eP50l FFh3Yu5v7x/Ojc394/nSUUBdi5PqaSiigQUUUUAFFFFABRRRQAV9u+Bf+Se+Gv8AsFWv/opa+Iq+ 3fAv/JPfDX/YKtf/AEUtAHxnrv8AyMOp/wDX3L/6Gaz6+oZvAvhieaSaXRrZpJGLMxBySTknrTP+ EA8J/wDQCtPyP+NfM/604b+WX4f5nd9Rn3R8w0V9Pf8ACAeE/wDoBWn5H/Gj/hAPCf8A0ArT8j/j R/rThv5Zfh/mH1GfdHzDRX09/wAIB4T/AOgFafkf8aP+EA8J/wDQCtPyP+NH+tOG/ll+H+YfUZ90 fMNFfT3/AAgHhP8A6AVr+R/xo/4QDwn/ANAK0/I/40f604b+WX4f5h9Rn3R8w0V9Pf8ACAeE/wDo BWn5H/Gj/hAPCf8A0ArT8j/jR/rThv5Zfh/mH1GfdHzDRX09/wAIB4T/AOgFafkf8aP+EA8J/wDQ CtPyP+NH+tOG/ll+H+YfUZ90fMNFfT3/AAgHhP8A6AVr+R/xo/4QDwn/ANAK0/I/40f604b+WX4f 5h9Rn3R8w0V9Pf8ACAeE/wDoBWn5H/Gj/hAPCf8A0ArT8j/jR/rThv5Zfh/mH1GfdHzDRX09/wAI B4T/AOgFafkf8aP+EA8J/wDQCtPyP+NH+tOG/ll+H+YfUZ90fMNFfT3/AAgHhP8A6AVp+R/xo/4Q Dwn/ANAK0/I/40f604b+WX4f5h9Rn3R8w0V9Pf8ACAeE/wDoBWn5H/Gj/hAPCf8A0ArT8j/jR/rT hv5Zfh/mH1GfdHzDRX09/wAIB4T/AOgFafkf8aP+EA8J/wDQCtPyP+NH+tOG/ll+H+YfUZ90fMNF fT3/AAgHhP8A6AVp+R/xo/4QDwn/ANAK0/I/40f604b+WX4f5h9Rn3R8w0V9Pf8ACAeE/wDoBWn5 H/Gj/hAPCf8A0ArT8j/jR/rThv5Zfh/mH1GfdHzDRX09/wAIB4T/AOgFafkf8aP+EA8J/wDQCtPy P+NH+tOG/ll+H+YfUZ90fMNFfT3/AAgHhP8A6AVp+R/xo/4QDwn/ANAK0/I/40f604b+WX4f5h9R n3R8w0V9Pf8ACAeE/wDoBWn5H/Gj/hAPCf8A0ArT8j/jR/rThv5Zfh/mH1GfdHzDRX09/wAIB4T/ AOgFafkf8aP+EA8J/wDQCtPyP+NH+tOG/ll+H+YfUZ90fMNFfT3/AAgHhP8A6AVp+R/xo/4QDwn/ ANAK0/I/40f604b+WX4f5h9Rn3R8w0V9Pf8ACAeE/wDoBWn5H/Gj/hAPCf8A0ArT8j/jR/rThv5Z fh/mH1GfdHzDRX09/wAIB4T/AOgFafkf8aP+EA8J/wDQCtPyP+NH+tOG/ll+H+YfUZ90fMNFfT3/ AAgHhP8A6AVp+R/xo/4QDwn/ANAK0/I/40f604b+WX4f5h9Rn3R8w0V9Pf8ACAeE/wDoBWn5H/Gj /hAPCf8A0ArT8j/jR/rThv5Zfh/mH1GfdHzDRX09/wAIB4T/AOgFafkf8aP+EA8J/wDQCtPyP+NH +tOG/ll+H+YfUZ90fMNFfT3/AAgHhP8A6AVp+R/xo/4QDwn/ANAK0/I/40f604b+WX4f5h9Rn3R8 w0V9Pf8ACAeE/wDoBWn5H/Gj/hAPCf8A0ArT8j/jR/rThv5Zfh/mH1GfdHzDRX09/wAIB4T/AOgF afkf8aP+EA8J/wDQCtPyP+NH+tOG/ll+H+YfUZ90fMNFfT3/AAgHhP8A6AVp+R/xo/4QDwn/ANAK 0/I/40f604b+WX4f5h9Rn3R8w0V9Pf8ACAeE/wDoBWn5H/Gj/hAPCf8A0ArT8j/jR/rThv5Zfh/m H1GfdHzDRX09/wAIB4T/AOgFafkf8aP+EA8J/wDQCtPyP+NH+tOG/ll+H+YfUZ90fMNFfT3/AAgH hP8A6AVp+R/xo/4QDwn/ANAK0/I/40f604b+WX4f5h9Rn3R8w0V9Pf8ACAeE/wDoBWn5H/Gj/hAP Cf8A0ArT8j/jR/rThv5Zfh/mH1GfdHzDRX09/wAIB4T/AOgFafkf8aP+EA8J/wDQCtPyP+NH+tOG /ll+H+YfUZ90fMNFfT3/AAgHhP8A6AVp+R/xo/4QDwn/ANAK0/I/40f604b+WX4f5h9Rn3R8xc19 t+Bf+SfeGv8AsFWv/opa4H/hAPCeP+QHafkf8a9L0uCK00iytreJUghgSONR/CoUAD8q7MLnlHEX 5IvQxq4aULXZzFRyzxQKpldUDOEXJ6sTgD86krD8UTC30+3mKs4ju4nKoMk4bOB71+fYel7WooPq e5CHNJR7l6TWNPjETPdxKJmKx5P3iDg4/HirgkQyGMOu9QGK55AOcHH4H8jXDaVe20N5pj3UbbZo p1VTHuKsZiRkduhrWhumHjy5iIJRrcRg+jKFbjnph/zrvq4FRbSvom/Wzsbzw9m0uib+52NabW9N gginlvI0imBMbE8MB1x+Yqx9ttmn8kTJ5hcx7c87gu4j8ua5q0gtpvDWiNNHGdsse0uOmSePxOPr VWC8VfFot/LlLJezSbguVI8nGB78fyprA05KSje6v+GwewTva+l/wOymnjtommmdY415ZmPAqrc6 zp9ocXF3EnzlOW/iABI/UfnXHx+IL3WtK1i3uYcMibkCRkY5A2n39Px9KuzxRSm4EiK4/tqMYYZ6 hAf0pxy5Qdqu/l8v8x/VuR2n+H9eZ1C39q7FVmUkMqkD1YZA/EUlzqFpaK5uJ0iCBS249AxIH5kH 8qwJnEetzIgA3ajCp+nkZH8qs6uiuuthlDD+zkOCM8gykH86z+qQUo3vZpP77f5mbpxTV+tvxNOP VrCWESLdRmMo0obPGxTgn8DTP7c0wW6XJvYhE77FctwW9K5vWEhjsCiIFYaWdoUYAG5c/rin6pda dcx2F2IJU02SOaOVkhwULKoBxj2ODzWqwNOVnrZt/h/maKhHzs7nY9Kz21vTVFwTeRfuP9bg/c5x z+PFY134juYfF0el+WPszbUyEO7LY568j/E9cVQt7i3uPDV3axREzw3I80+X94eeD178Gs6eAdlK ps7bdm92KOGejl1t9zOuXUrMxRSi4jKSozo277yr94/h3qX7VB50cXnx+ZIu5E3jLD1A71xF02Ul ACqqrqKqqjAAAHatXR7C3utXurqaPfNbiERMSfk/dDp+ZqquBhTg5tvr+dkKVCKV7/1ex0M11Bbx SySSqqRffYn7vQ8/mKit9TsrlY2huI3Em7Zg9dvX8sisPQrhb/VvEFvIvmRicApJyD1U8enyj9Ko 3caRaPpexFUHSp2OBjkxpk0oYKDn7OTd9PxVwVFc3K9/+Bc6mHVLKcQtDcxuszFUIP3iOoqeCeO6 gSeBw8bjKsOhFcHeXC2WpwtEv7qK7iIUjHBhTJ+uKX/hJLnSNO0S3gjUxvEHkLKTuGSMD+f5VpPK 7pOn17+jf+Rq8G2k49f+CzvfMTzfK3r5mN2zPOPXFM+2W2+VPPj3RLukG4fIPU+nSsG4uyPGlgsZ +VoGSTPGNwZgMdc/J/Ksw/ZV8K3xwv2yZZpHYj5nUSFck9+g/wAmsoYG6V3vb8W/8jJYe9r9bfjf /I7Bby2byCs8bCfIiKsDvwCTjHXgGk+32na4iP7wRcODhz0U+9chazI7WtxakJA1zcvBhduF8k9s eoJqe3023tdD0qW3h2y3E1s0rDJLHIOf1NW8BCLs29f83v6W+8boKO7/AK1OnXULRzhLiNvkZ/lb PyqcMfwPFQ2+s6bdY8m7ik+cJwf4jkgfofyNYHh8K2oWoPINvccH/rvUdvBFCtv5caIP7ZkX5VA4 AcAfhR9RpJuLbuv+D/kDoxTauzqvttmRD/pEOZv9WN4+f1x602PUbOW+ezjnja4jGWjB5HT/ABFc XHJbrp+lxSLunmtVSEbNx3eYD+HStyyv7SG71dVhJuoGklJEf3hgdG/LipqYKME7Xe/52uEsOop2 u9/zsbt1dQWdu09zKsUS9WY4AqCPVLKWMtHcxsuwSZB/hJIB/MEVyEHiZ7/QZp9Rj3CG6iLFE4K+ ZuwPoBjH0yeag8RXsS6kfs6bYLjTSgBUrj5mYccYOVrSlll3yTvfXXppb/MuOEfNyPf8DvBd2xO3 z48+Z5WNw+/jO3645xTE1CzdIXW5ixP/AKrLgGT6DvXObg/i/wCwbdqrcG7+uIVUfqT+RrHNxEE0 63UsZWtLfyAF53ebl8Ht92iGXRlbV7J/fclYa9tfP77ncnU7EGcG5jzB/rfm+59ak+1weeIPNXzS +wJnndt3Y/755rjL6AiyneKJR5kN4oCphiRcLwfzGB9aqy6t5hsdRY7R9vQyZPTEUYb096pZZGSv F9181/TKjhVJXj5/edxcapY2wlM9xHGImCPuP3SRkD8qcmoWki7knRgPLPX+/wDc/PtXCrfRiS5u 7lD5f9rKzLtzxsYDjvxirt3erH4j8lFYQXf2TYdpUZWRGAxj0J4pPLYpqOt7X8ulweFtp/XS51lr qdnezSRW1wkkkf31X+HtTry/tNPRHu544lc7VLnGTWLJLHpEWvXdrAhmjkB2qmf+WaHJA7ZLEn6n tXPya9/aOnWN1qCbtkssTYj4cmIgcdDyazp5eqkuZX5fx2uTDDc7vHb8drnd/brTA/fx4JVQd3Ut 93HrntUEWs6bNFNJFeROkPMhVshR61zMa7bKzVgQRJYgg9uBWdBJbHRtSghULJBBIj4XH/LUlee/ BrSOXQcW7vew44aLW73R6E9xFFLHEzqJJMlFzy2OuPzFJDcQ3MfmQyxyJnG5GDDPpkVgeJiBMnr9 hu9pz0OFrU0ayt7HTIktoxGsirIwBJyxUAnn6CuKeHhGhGpfV/5mMoRUVLqye31C1upJo4J0keE4 kCnO089fyNJcahZ2tqt1PcRpA+Nr5+Vs8jBrmtMeys7LUAscsN7Z27pIpGCygswYHv8AXNVYryGL w1o5vY1ZLe9MUildw4DgEDv2/Gun6jFydr2v83pfT1NPq6vpe1zql1jTmkhQXcReYbo1zyw9f0NL a6xp94SLe7jkIYLwe5zgfofyrHt7qyh8WXEDRczQwmAiPhcBs9vl6ioJY0sNEvbtLdVa3v8AzdkI C7lWQcHH+yTS+qU7qOt3a23X/IPYx211tb5nVRSpNGJI2DIehHeqy6rYvfGxW5jN0CR5WeeBn+Vc nea3deHbfRrGKMbTCrzFlJJzwVH459+laV9HBHdavdxRxrcjTg6Nsw2T5mTj8Fz+FEcBZ+9s72++ 2oOhy6vZ7f8ABN+O8tpYGnjuInhXJaVXBUY65PSknvba2fbNOiN5bSYJ52r1NcbBOsnhzV3sywgk 8qKLAKgsURG4+vWqWsagxi0u4PAk06RHHQZKFff+LH6VpDLVKdr9WvPa5UcI5Stf+rXO8/tSx+0e R9oj83y9+wHnbjOfyqIa3prW32gXkPkh9hfdwG9K5WeS3hnuhKjRXX2bz7WXb/rALfawz7cnHtVa 0a2u5xNCmIWkYKpjwCRbEMf++hVRy2ny8zva1xrDRavrsd6bm385YfOTzCu4LuG4j1A64qC21fT7 1pFt7qKUxjc+0/dHrmuMs5I21Swi4Ny8Vm0bFc4UKS/Pbitq2+z2lh4gnKIu2aTJUAEjy1OPzJ/O s6uBjT0u29LfNkSw8Y6a30Nq71SxsEje5uY41l+4WP3vp+YpZNTso45JHuUVI9u9i3C7sbc/XIrm 0CXHhfR1mRXaO7iiYMAcbZNhH5D8qklEC+IZllRXja+jQoVyObcgcdO9KOCpu6bd1e/nZoXsY6p3 uv8ANHR/bbbLDz0yuwEA/wB84X8z0qdmCqWYgKOST2rzlLuWK6hjjVsyWdnt453K6Y4/OtU+JJ59 f1DS5EAg8t0j+XkFVYkn6/0Hrmqq5XKL913W79NCpYSS29fyOqF/aGEy/aIxGEWQsWAARs4Y+xwa jm1WwgaBZbqFTP8A6r5vvfSuTiMcOlTy3AAgFtp7OSM5UPzwPoaztRurSOzhlKFUmguPs42YK7py ykf3flq45ZBytd72/C44YXmfXe34XPR96eZ5e5d+N23POPXFQQX9rdFBBPHKZELrtbOVBwT+fFYT 3Tjx7EgyUNr5Jz2Y7nyOfRKx/A9wZb6OFusFtKuD6F0YH9TWCwCVNzb2Sf33/wAkL6t7jm3sk/vO 0/tOz+3mxFxH9qHPl5+bpn+XNSR3dvLaC6SZDbld/mE4Xb3Oa43ULhV8V3McSE3SXCTbgvRBDg5P pnFa0j+V4DQKBmSzjiA93UL/ADaipgoRULN+9y/iKVC3Lbrb8Tcmu7e2YLNMiEoz/McfKuNx/DIp q31q7ELMhIZUwD0LDIH4g1wWr6i0sGl3AY7G0+VXAPALKUPr/Fj9KcLya28TC3VHKzy2mGA4G1F3 fo3P4VvHK04avXX8HY0WD0vfWz/B2O4/tSyKl/tMZUKznnoqnDH8DUxuoPtItjNH55XcI9w3Y9cV 57eXQtLa3bafLktrqFiOgLO+M8eorp7OGyTxDcyzqHvZLrZC+zkAQqcZ7cMfr+FZ1cBGEea72f4O 3/DmdTDqGuvX8GdBXV2n/HlB/wBc1/lXKV1dp/x5Qf8AXNf5VeT/AG/keTjOhylZOvqWgs8D/l8h /wDQxWtRXlUans6in2O6Ls0zibK8g0e7s5tQ3QqYriNS6N97zs44Hp/nmpIre/i8TJqL/wDHm15L GEI+bldm71wSo/75FdjgNjIpfrXe8w1bUdWmnr0fY3+sat21d0/n2OKtL63m0TTbFGJuba6gE0ZQ jYfMxycY61bt4JRr6uY22rqMpJI6AwDBrqFjRN2xFXcdxwMZPrTqUswS5lGO9+vf5CdfV2W9/wAT n9R0S2stF1E6dbCOaSMt+7zk4wcD8uAKoRS/bdP+1xJ+6k1WJ0bGCV3IMn8ePwrrzyMGgAAYxWdP HSjG0ld3ve/p/kSqzt72ruchfuINWvbuQ7Yre+gllbBO1fJ25wOerCrtxOmoW+rTWzb0l01PLOCN 2fN7GugZFdCrqGU9QRkGnDgVbxyaXu6qy36K3l5DlVUraaq34HF6zlosKCT/AGSx49mSrGr+IIJ9 NAs2820mimgZ1ibiTYNi9OM59K6yjrTWOh7vNC/Lfr3+Q/bLTmW3mUX0ixk1Iag1uhuFGN+OvTB+ oxXLpfQP4autOi3PewTGWSEIdwAnyevB4x3rtqAoGaypYtwXv3dmmte36ChWt8WtrW17HAXUhXTG vTFIIpJLyMZQ5HmD5CR2yQB+NaVnfvp+tSWRhk867MLAFTxGIgGb81Irre1HetpZippxcNNevndF fWE1Zx79fO5xfhy3vrPV7eW8ZSl7au6Ko+4d4fDd/wCM/wDfWO1PuoJZtM0mOONmdtMmQAD+Ixpg fWuxxRxSeYt1Pacuv/Dr9RPENz5rann0ED6rcxkwvElw7RL5i4wwttp4+vSt7SdFsr/QNNa8tlke KL5d2eOvH610YwO1A4FKtmM6iSguW1uvqOeJlJWjpb/gnG30F63iBtSwq2cN5DGVZcM38O7PoC5/ yKz5nlFrqFk6OrWdtOsmRwC8qupH1H8q9C49KMCtIZlypJx22/r7/vKjirWvHa34HGxKSbCwRctb XFzAvPUeUxX9GWo7fVWn0SIpFIsOmm181tp3EqcSD8AB+Zrtvwox7VP9ox6w/Hzbf33JddPdfj53 ZxVhf2+mT6feXh8mCS2nVHCMQxMoYcDJ5HNTufJsTcsjGO21aSWTapJCbmBOPbdmusaNHKlkVivK kjp9KdQ8fG/Ny69dfXy8xOsm72/E4JITDa6NePvR7SKJyMclWkCsMH2at3S7yz/tLUtPd1NxLOzm MIeV2gcnp6966DtR3qKmOVRNOPfr537BOvzppr8fO5z+padp2j6MZI4lhijuYZXIGePNGc+uAT+l YPiNo9ZS4urMebGLWORW2EE4kdTgEZ45rvTyMUvbpRQx7ppNpt33v6f5BTxDi1J6u/cxI7Nl8ZSX YyFayC/U7uf0A/OuUggZX0u9XcDbW8DEr3UyMrD8mr0ajAqqWYuCd1fRL5L/ADHHENdPI4qW5ka5 uLZraZTB5+WK/KwknRlIP05pIdCaZLyxeIMGu59jOMhS0alGJx9P1rtsD0op/wBpSStBW+fUFiWl aKscTLaw6J5DS5EEN1AZJNpYZETAnp64/MVJeKuqX8N7bFnjivLZw2MBkbAzjr1I9O9dlRjij+0H dSa97a9/+AL6w73e5iWtvHc6trkU8YeJ3iDKw4I8paik06103VNFgtYVji82ViBzk+URk+/AroP6 0f0rnWLkn5Wta/la5PtXfytb8LHLapI6eIUtfIZ2mmgljO0kEITvJPsMGqDPJc6PqEYhk8yK1kR/ 3ZA/1jEcnr8ozxXcY70hUEYIyD2raGPUYqPLtbr2LVdJJW2t+ByeqXkGsyQNYP5we1u41wCCW2px g4PcVp+HtV/tO1k2IRBCEjjcggsdo3frWwqKiBUUKo6ADAFOAwTxUVMVCVL2ajttr5+hEqkXHltt tr5nFXdzcaql9DHAUvfLW2lBQgLulwuT6bSTUulQXMN1HaXpWaaPU2kZ1GFYtC7AgYHfn8a7DA7U Vp/aC5HCMbJ/hpYp1/dcUtDn0v7Wy8V3Udy/ly3KQrCChO8/MDg49cU+cH+wdbyMf6//ANBrdxzR 0rF4pXUktdOvb5f5kOps1/Vije6PYahJFJd26SNF93d/I1kaujfbNUwDzpRA9+XrpaKmji5U2r6p f53FGo1vqcLBa3S6V/ZdqWWQX0bxPjKxqUEgJ9QCD1qpLp88mmvZzqPOtrOZd2MglJEf5fwIH416 LgZzRgZzXYs0ad1Hz+Zv9bad7efzOI1S7klUafJAwlihZ4m2H5ozbODz/vnH5elXdZdrew0q4WCR 441ZWES5I3RlR+prquO4o/Cs3j17to6Lz3vuT7dXTtscLp6NaaxZXDqwdIrSB1PBAkRl/wDQgtXb y3uJdM1e1iQ+bPqCoOOACIzk+2K63AoonmPNPn5ddPwdweIbkpW7fgcdbQXMGntbXBV5odViZ3QY BDMrBsds7ulLfzPa6td3Qt3mSG9iZ1RckAwFc/gWFdhxRgULMPebcd9/na/5C9vq21ucGbNjb2Ny IGaS2ezaQAHO0LjGPqRXUPoVk1xNdpCi3UiFfMPYkEZ/XmtSlNRWx86lrafPp2FOvJ7aHDWpS/0m 4tpIZUCJZWkoYFTuWUhh/wCPD8xUN3uOkW27zJJTZzWYCxljvSRQBxnqAevp7131FbLNLSvy9b7+ VuxaxFunW+5xtxa3q+JZdWHy2q3ccZUr8xG0JuBxnHzHj3PpSeGLF7bV7acrjzdOIbjoyuoOfwxX Z4BGKBgYqHmMnTcOXpb5W0E8S3Hlt0t8kZNgqNq+tAoCTJGGJ/iHlLxj8/zrEe5Op+H7PS7Bz9ri eGKYGM4jKgk5yMHBQ/lXY01I1jBKqFycnA7+tZ08Yovma1VreqViI1Unfrpb5HnjaXNLZSWMiKZL e1nUMvRmWVH4444YfnWp9jeTUbO5CZMN4it1yA0Efb/gIrsaK3eaSfTv+O5q8VJ9O/47nn1xbNd6 BcRpGS6QySqe3E7E4/AH8xWyJivjH7KUk3POLhSR8uwQFMj/AIFx+FdRjjGKMc5xUyzC6acdHfr3 t/kKWI5rpre/42/yCurtP+PKD/rmv8q5SurtP+PKD/rmv8q2yf7fyPJxnQpf2Jbf35v++h/hR/Yl t/fm/wC+h/hRRXoewpfyr7kRzS7h/Ylt/fm/76H+FH9iW39+b/vof4UUUewpfyr7kHNLuH9iW39+ b/vof4Uf2Jbf35v++h/hRRR7Cl/KvuQc0u4f2Jbf35v++h/hR/Ylt/fm/wC+h/hRRR7Cl/KvuQc0 u4f2Jbf35v8Avof4Uf2Jbf35v++h/hRRR7Cl/KvuQc0u4f2Jbf35v++h/hR/Ylt/fm/76H+FFFHs KX8q+5BzS7h/Ylt/fm/76H+FH9iW39+b/vof4UUUewpfyr7kHNLuH9iW39+b/vof4Uf2Jbf35v8A vof4UUUewpfyr7kHNLuH9iW39+b/AL6H+FH9iW39+b/vof4UUUewpfyr7kHNLuH9iW39+b/vof4U f2Jbf35v++h/hRRR7Cl/KvuQc0u4f2Jbf35v++h/hR/Ylt/fm/76H+FFFHsKX8q+5BzS7h/Ylt/f m/76H+FH9iW39+b/AL6H+FFFHsKX8q+5BzS7h/Ylt/fm/wC+h/hR/Ylt/fm/76H+FFFHsKX8q+5B zS7h/Ylt/fm/76H+FH9iW39+b/vof4UUUewpfyr7kHNLuH9iW39+b/vof4Uf2Jbf35v++h/hRRR7 Cl/KvuQc0u4f2Jbf35v++h/hR/Ylt/fm/wC+h/hRRR7Cl/KvuQc0u4f2Jbf35v8Avof4Uf2Jbf35 v++h/hRRR7Cl/KvuQc0u4f2Jbf35v++h/hR/Ylt/fm/76H+FFFHsKX8q+5BzS7h/Ylt/fm/76H+F H9iW39+b/vof4UUUewpfyr7kHNLuH9iW39+b/vof4Uf2Jbf35v8Avof4UUUewpfyr7kHNLuH9iW3 9+b/AL6H+FH9iW39+b/vof4UUUewpfyr7kHNLuH9iW39+b/vof4Uf2Jbf35v++h/hRRR7Cl/KvuQ c0u4f2Jbf35v++h/hR/Ylt/fm/76H+FFFHsKX8q+5BzS7h/Ylt/fm/76H+FH9iW39+b/AL6H+FFF HsKX8q+5BzS7h/Ylt/fm/wC+h/hR/Ylt/fm/76H+FFFHsKX8q+5BzS7h/Ylt/fm/76H+FH9iW39+ b/vof4UUUewpfyr7kHNLuH9iW39+b/vof4Uf2Jbf35v++h/hRRR7Cl/KvuQc0u4f2Jbf35v++h/h R/Ylt/fm/wC+h/hRRR7Cl/KvuQc0u4f2Jbf35v8Avof4Uf2Jbf35v++h/hRRR7Cl/KvuQc0u4f2J bf35v++h/hR/Ylt/fm/76H+FFFHsKX8q+5BzS7h/Ylt/fm/76H+FH9iW39+b/vof4UUUewpfyr7g 5pdw/sS2/vzf99D/AAo/sS2/vzf99D/Ciij2FL+Vfcg5pdw/sS2/vzf99D/Cj+xLb+/N/wB9D/Ci ij2FL+Vfcg5pdw/sS2/vzf8AfQ/wo/sS2/vzf99D/Ciil7Cl/KvuQc0u4g0S2P8AHN/30P8ACtOK FY4URc4VQBk0UV0YGnBJ2RjWbdj/2Q== ------_=_NextPart_000_01C26B0B.D9041672-- From Mark.Welsh@dot.state.fl.us Thu Oct 3 21:47:06 2002 From: Mark.Welsh@dot.state.fl.us (Mark.Welsh@dot.state.fl.us) Date: Thu, 3 Oct 2002 16:47:06 -0400 Subject: shrug-l: RE: LAST CALL FOR PRESENTATI ONS Message-ID: Florida Department of Transportation (FDOT) has submitted two abstracts for presentation some time ago! Mark Welsh From Julia.Utter@dep.state.fl.us Wed Oct 2 22:22:54 2002 From: Julia.Utter@dep.state.fl.us (Utter, Julia) Date: Wed, 2 Oct 2002 17:22:54 -0400 Subject: shrug-l: JOB OPPORTUNITY! Message-ID: This is a multi-part message in MIME format. ------_=_NextPart_001_01C26A59.DF176B97 Content-Type: text/plain; charset="iso-8859-1" Content-Transfer-Encoding: quoted-printable Date: October 2, 2002 OPEN COMPETITIVE TITLE: OPS ENVIRONMENTAL SPECIALIST II=20 LOCATION: Tallahassee (LEON)=20 PAY BAND: 08 PAY RANGE: $ 2,346 to $ 5,865 MONTHLY SPECIAL REQUIREMENTS: Valid driver's license and travel APPLY TO:=20 Julie Utter, Computer Programmer Analyst 2600 Blairstone Road, Room 560D Mail Station 3525 Tallahassee, Florida 32399 julia.utter@dep.state.fl.us (850) 245-8508 SunCom 205-8508 APPLICATION DEADLINE: Open until filled BRIEF DESCRIPTION OF JOB DUTIES: This is a highly technical and = professional position in the Watershed Monitoring and Data Management Section. The position is responsible for providing technical and scientific expertise = to aid in the management and evaluation of monitoring data from the State's surface and ground water resources. The position requires knowledge of advanced data management software (STORET, SIM, and Oracle), as well as geographic information systems software, to assist in managing and = evaluating data. Travel is required. SPECIFIC DUTIES INCLUDE, BUT ARE NOT LIMITED TO THE FOLLOWING: 1. Act as a STORET Coordinator for the Department of Environmental Protection. Working with water quality monitoring agencies in assigned = DEP District to facilitate upload of data to STORET. 2. Coordinate and manage input of data collected by the Department into the Department's STORET database. 3. Provide training on the use of STORET to data generators. Provide STORET and STORET-related software to data generators. Assist in the installation and operation of STORET and STORET-related software to data generators. 4. Participate and work effectively as a leader, facilitator, or member of bureau or section approved teams. Teams will be created as needed to facilitate completion of tasks related to the implementation of the = rotating basin approach, to improve the effectiveness of the operation of the = section or bureau, or to resolve process or work problems. 5. Manage contracts as required by above duties. Preparing oral and written reports as needed. 6. Perform miscellaneous duties as needed. KNOWLEDGE, SKILL(s) & ABILITIES: REQUIREMENTS AND PREFERENCES INCLUDE, = BUT ARE NOT LIMITED TO THE FOLLOWING: 1. Knowledge of Oracle, SQL, and PLSQL. 2. Knowledge of database structure and management concepts. 3. Ability to deal with the public in a tactful and courteous manner. 4. Ability to work independently and with others in a team setting with minimal supervision. 5. Ability to plan, organize, and coordinate work assignments. 6. Ability to communicate effectively, both verbally and in writing. 7. Ability to complete assignments on time. 8. Knowledge of water chemistry and data collection and analysis techniques. 9. Knowledge of STORET. MINIMUM QUALIFICATIONS: A bachelor's degree from an accredited college = or university and two years of professional experience.=20 *************************************************************************= **** ********************************** NOTE: Males 18-26 years of age who are or were required to register with = the U. S. Selective Service and have not done so are ineligible for = employment or promotion. To apply, submit a State of Florida Employment Application and Resume to = the individual whose name appears above.=20 ------_=_NextPart_001_01C26A59.DF176B97 Content-Type: text/html; charset="iso-8859-1" Content-Transfer-Encoding: quoted-printable

Date: October 2, 2002

OPEN COMPETITIVE

TITLE: OPS=20 ENVIRONMENTAL SPECIALIST II

LOCATION:=20 Tallahassee (LEON)

PAY BAND: 08     PAY RANGE: $ 2,346 to $ 5,865 = MONTHLY

SPECIAL REQUIREMENTS: Valid driver’s license and travel

APPLY TO:=20
Julie Utter, Computer Programmer Analyst

2600 Blairstone Road, Room 560D
Mail Station = 3525
Tallahassee,=20 Florida 32399

julia.utter@dep.state.fl.us
(850) = 245-8508 SunCom=20 205-8508

APPLICATION DEADLINE: Open until filled

BRIEF DESCRIPTION OF JOB=20 DUTIES: This is a highly technical and professional position in = the=20 Watershed Monitoring and Data Management Section. The position is = responsible=20 for providing technical and scientific expertise to aid in the = management and=20 evaluation of monitoring data from the State’s surface and ground = water=20 resources. The position requires knowledge of advanced data management = software=20 (STORET, SIM, and Oracle), as well as geographic information systems = software,=20 to assist in managing and evaluating data. Travel is = required.

SPECIFIC DUTIES INCLUDE, BUT ARE = NOT LIMITED=20 TO THE FOLLOWING:

  1. Act as a STORET Coordinator for the = Department of=20 Environmental Protection. Working with water quality monitoring = agencies in=20 assigned DEP District to facilitate upload of data to = STORET.
  2. Coordinate and manage input of data = collected by=20 the Department into the Department’s STORET = database.
  3. Provide training on the use of STORET = to data=20 generators. Provide STORET and STORET-related software to data = generators.=20 Assist in the installation and operation of STORET and STORET-related = software=20 to data generators.
  4. Participate and work effectively as a = leader,=20 facilitator, or member of bureau or section approved teams. Teams will = be=20 created as needed to facilitate completion of tasks related to the=20 implementation of the rotating basin approach, to improve the = effectiveness of=20 the operation of the section or bureau, or to resolve process or work=20 problems.
  5. Manage contracts as required by above = duties.=20 Preparing oral and written reports as needed.
  6. Perform miscellaneous duties as=20 needed.

KNOWLEDGE, SKILL(s) & ABILITIES: = REQUIREMENTS=20 AND PREFERENCES INCLUDE, BUT ARE NOT LIMITED TO THE = FOLLOWING:

  1. Knowledge of Oracle, SQL, and = PLSQL.
  2. Knowledge of database structure and = management=20 concepts.
  3. Ability to deal with the public in a = tactful and=20 courteous manner.
  4. Ability to work independently and with = others in a=20 team setting with minimal supervision.
  5. Ability to plan, organize, and = coordinate work=20 assignments.
  6. Ability to communicate effectively, = both verbally=20 and in writing.
  7. Ability to complete assignments on=20 time.
  8. Knowledge of water chemistry and data = collection=20 and analysis techniques.
  9. Knowledge of STORET.

MINIMUM = QUALIFICATIONS: A bachelor’s degree from an accredited college or = university and two=20 years of professional experience.

****************************************************************= ***********************************************

NOTE: Males 18-26 years of age who are or = were=20 required to register with the U. S. Selective Service and have not done = so are=20 ineligible for employment or promotion.

To apply, submit a State = of Florida=20 Employment Application and Resume to the individual whose name appears above. =

------_=_NextPart_001_01C26A59.DF176B97-- From PenceP@talgov.com Fri Oct 11 18:20:44 2002 From: PenceP@talgov.com (Pence, Patrick) Date: Fri, 11 Oct 2002 13:20:44 -0400 Subject: shrug-l: 2002 SHRUG GIS Conference - Nov. 12-15 - **LAST PRE-REGISTRATION REMINDER** Message-ID: <614E33D8AF10704AAB61E151813351C80289AF4E@cotexchange3.ci.tlh.fl.us> This message is in MIME format. Since your mail reader does not understand this format, some or all of this message may not be legible. ------_=_NextPart_000_01C2714A.88636D72 Content-Type: multipart/alternative; boundary="----_=_NextPart_001_01C2714A.88636D72" ------_=_NextPart_001_01C2714A.88636D72 Content-Type: text/plain; charset="iso-8859-1" This is your last chance to Pre-Register for the 2002 Seven Hills Regional Usergroup for GIS Conference! Remember, the price of registration increases from the $50 Early Registration rate to the standard Conference rate of $75 after next Tuesday, October 15th. Save 25 bucks and be eligible for "early-bird" prizes by registering now! Next Tuesday is also the last chance to have information about your Poster or Presentation submittal listed in the printed Conference Agenda. These items will still be accepted afterward, up until the conference, but will not be guaranteed a listing in the Agenda. You can still pre-register, submit presentation & poster abstracts, and register for pre-conference ESRI Training sessions via the SHRUG website ( http://www.shrug-gis.info ). Hotel accommodation information and directions to the Tallahassee-Leon County Civic Center are also available at the SHRUG site. ** We are also still accepting vendors for our Exhibit Hall, so please feel free to extend an invitation to any GIS data or industry providers who you think might be interested in having a booth at our conference. Visit the website for details.** Plan the week of November 12-15th on your calendar around attending this exciting gathering of GIS professionals. Please pass this message along to non-SHRUG members of your GIS workgroup whom would benefit from attending this conference. We can't wait to see you there! Sincerely, The 2002 SHRUG Workshop Planning Committee Current Presentation Tracks Digital Terrain Modeling Mapping Water Quality GIS Data Access Communities Online with ArcIMS Remote Sensing Routing Applications for Community Services Local Government GIS State & Federal Government GIS Enterprise GIS Photogrammetry GIS Data Models GIS Data Standards GIS Vendors Transportation Applications Law Enforcement GIS ------_=_NextPart_001_01C2714A.88636D72 Content-Type: text/html; charset="iso-8859-1" Content-Transfer-Encoding: quoted-printable

         &n= bsp; =20 3D""

This is your last chance to Pre-Register for = the 2002=20 Seven Hills Regional Usergroup for GIS = Conference!

Remember, the=20 price of registration increases from the $50 Early Registration rate to = the=20 standard Conference rate of $75 after next Tuesday, October 15th.  = Save 25=20 bucks and be eligible for "early-bird" prizes by registering now!

Next Tuesday is also the last chance to have information about your = Poster or=20 Presentation submittal listed in the printed Conference = Agenda.  These=20 items will still be accepted afterward, up until the conference, but = will not be=20 guaranteed a listing in the Agenda.

You can still pre-register, submit presentation & poster = abstracts,=20 and register for pre-conference ESRI Training sessions via the = SHRUG=20 website (http://www.shrug-gis.info).  Hotel = accommodation=20 information and directions to the Tallahassee-Leon County Civic Center = are also=20 available at the SHRUG site.

** We are also still accepting vendors for our Exhibit Hall, so = please feel=20 free to extend an invitation to any GIS data or industry providers who = you think=20 might be interested in having a booth at our conference. Visit the = website for=20 details.**

Plan the week of November 12-15th on your calendar around attending = this=20 exciting gathering of GIS professionals.

Please pass this = message along=20 to non-SHRUG members of your GIS workgroup whom would benefit from = attending=20 this conference. We can't wait to see you = there!

Sincerely,

The=20 2002 SHRUG Workshop Planning Committee

Current Presentation Tracks

Digital Terrain=20 Modeling        Mapping Water=20 Quality
GIS Data=20 Access           =     =20 Communities Online with ArcIMS
Remote=20 Sensing           = ;      Routing=20 Applications for Community Services
Local Government=20 GIS        State & Federal = Government=20 GIS
Enterprise=20 GIS           &nb= sp;       =20 Photogrammetry
GIS Data=20 Models           =     =20 GIS Data Standards
GIS=20 Vendors           = ;           Trans= portation=20 Applications
Law Enforcement GIS


------_=_NextPart_001_01C2714A.88636D72-- ------_=_NextPart_000_01C2714A.88636D72 Content-Type: image/jpeg; name="WorkshopLogo.jpg" Content-Transfer-Encoding: base64 Content-Disposition: attachment; filename="WorkshopLogo.jpg" Content-ID: <428524616@11102002-0f70> /9j/4AAQSkZJRgABAQEBLAEsAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0a HBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIy MjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAIkAioDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD0n7Zc /wDPxN/32aPtlz/z8Tf99moaK/JfrNb+d/ez3/Zw7GP4s8ZL4U0V76eaV5WOyCLzCDI/+Hqa8G1n 4neLtbZhLrVzbwtkeTayNEmDnIODkjnuTXR/G6aZte02BgfIW2Loc8bi5Dfoq15Z2r9AyPCqOGjW k7ylrq729DysTO83FbIsXF3c3kglubiWdwNoaVyxx6ZP1NW4df1m3ZGh1a+jaMgoUuXBUjpjB4xX ofgD4baV4g0OPVtQupnEjOogiIULgkfMcEk9+Mdq6vUPg/4ZuwTa/arJuwjl3qPwfJ/Wrr57g6NZ 0Z3utG7aExwtSUeZGt8Mte1PVPBFtNeX11POkkiNLLOzu/zEjJJz3x+Arn/jTqV/b6PphhvrmMmd gSkzDPy/Wun8F+GJPCWjS6a179rU3DSxvsKYUqoxjJxyCeveuM+N8iDTNIiJ/eNLIwGOoCgH+Yr5 7CYj2ubp05NxbbW+1m9jsqQ5aGq1PI/7d1j/AKCt9/4EP/jXrPwTvdQurjWZ59QupfLWFArzMR8x c56/7NeLd69s+B8QGk6rNswzTopb1AUnH6n86+jzuo6eBm4uz0/NHHhleqrnrn2u5/5+Jv8Avs1k +Kb66TwjrTLczBhYzkESHIPltWhXPeO5Hi8DawyMVJt2XI9DwR+RNfB4OvVliIJyerXV9z1Jwgot 2Pm/+3dYz/yFb7/wIf8AxrqvhzqWqXvj3SoX1S82+Y7kGdiDtRmxjPfFcJ3ru/hJEJPH9q7E5iil dceuwrz+DGv0fHz5MLUkt+V/kePSV6kV5n0b9ruf+fib/vs18kHXdXyf+Jrff+BD/wCNfVs8yW9v JO+dkal2x6AZNfIR6mvnuF5znGq5tvbf5nXjYpctvMv/ANu6x/0Fb7/wIf8Axo/t3WP+grff+BD/ AONafgrRrbxD4rstLvGlSCfzNzQkBhtjZhjII6gdq9Xf4LeHdrbL3UlbHylpIyAfcbOa9zGZphsJ NQrPVq+39djmp4edRXieQWfi3xHp7lrTX9TgJILCO6cBsdMjOD+NdvoPxs8RWUyprEz6hbEgFs+X Io9QRgH6Ec+orD8d+BX8HS2zx3X2mzuMhGZcOGAGQR078fj+PE1qvYY2iprWL67P/NE+9TlZ7n1/ Yaz/AGnYQXtpeSS286B0cOeQfx4PYjtXifxg1y/HjKKK3v7uPyrRFYLMwBO52yMH0Irr/g7LLJ4H KyKQqXcixk55XCnP5lulec/FyRH8fXCqQSkESt7HbnH5EV83lUJUs0nR5m1FPr5o7a9nRUrbnJ/2 7rH/AEFb7/wIf/GvpH4eT3aeAtK8y9mldo2csztn5nZsde2cV8vDrX1N4NgW38FaKiEkGzifn1ZQ x/U12cTVJQw0eV2u/wBGZYKKc3c6L7Xc/wDPzN/32a8X+NGsX0GuabFDqNzGwtizKkzDgsQD19jX sVeEfGz/AJHCz/68E/8ARkleJw7VqTxvvSb0fU6cXGMaeiOF/t3V/wDoK33/AIEP/jXvPwhur1vB LSzX1xM011I2WkYlQAq4zn2z+NfOxr6O+FUKRfDzT3XOZWldvr5jL/JRXv8AEVWVPB+67Xa/U5cH FOpr2O5+13P/AD8Tf99mvPvGnxbXw7cSadp7td36cSFpW8uJvQ45Y+oBGPXPFZ/xV8aTaLbR6Ppk wS8uVLTyKfmij6AA9ieefT614VznrzXn5Llc6sViMRJ2eyu9fNmuJrRi+SC1Os1T4j+MNVMi3HiG +WN8gxwSmJcHIxhcZGD3/Gucur+7vQv2u7muNmdvmyFtueuM/QVqeGvCmq+Kb3yNPhBRSBLM/CRg +p/oOa9PsPglpyIDqOqXMr7eRAqxgH6sGyOte9iMxwmD9ycrPsjlhQqVNUjxy21G9s1ZbW8uIFY5 IilZQT74Natr418U2IjS28R6rFGnKxreSbB3+7nHf0r2OT4PeFniKAXqHj51nG79QR+lY+o/BG0Y Z0zVp42/u3KBwfXlcY/I1yQ4gwE9HJr1X+VzR4Sqj1LS9RurnR7Kc3kshlgjfeJCd2VBznNW/tlz /wA/E3/fZrL0Wzk03QtOsZWVpLe2ihcoSVLKoBxkdOKvdq+Fr4ip7SXLN2v3Z6cacbK6Jvtlz/z8 Tf8AfZo+2XP/AD8Tf99moaKy+s1v5397K9nDsTfbLn/n4m/77NH2y5/5+Jv++zUNFH1mt/O/vYez h2Jvtlz/AM/E3/fZo+2XP/PxN/32ahoo+s1v5397D2cOxN9suf8An4m/77NH2y5/5+Jv++zUNFH1 mt/O/vYezh2Jvtlz/wA/E3/fZo+2XP8Az8Tf99moaKPrNb+d/ew9nDsTfbLn/n4m/wC+zR9suf8A n4m/77NQ0UfWa387+9h7OHYm+2XP/PxN/wB9mj7Zc/8APxN/32ahoo+s1v5397D2cOxN9suf+fib /vs0fbLn/n4m/wC+zUNFH1mt/O/vYezh2Jvtlz/z8Tf99mj7Zc/8/E3/AH2ahoo+s1v5397D2cOx N9suf+fib/vs0fbLn/n4m/77NQ0UfWa387+9h7OHYm+2XP8Az8Tf99mj7Zc/8/E3/fZqGij6zW/n f3sPZw7E32y5/wCfib/vs0fbLn/n4m/77NQ0UfWa387+9h7OHYm+2XP/AD8Tf99mj7Zc/wDPxN/3 2ahoo+s1v5397D2cOxN9suf+fib/AL7NH2y5/wCfib/vs1DRR9Zrfzv72Hs4dib7Zc/8/E3/AH2a Ptlz/wA/E3/fZqGij6zW/nf3sPZw7E32y5/5+Jv++zR9suf+fib/AL7NQ0UfWa387+9h7OHYm+13 P/PxN/32a6a1d2tISSxJRSSfpXJ11dpn7FB/1zX+VexlNacnO8n0OPFxUbWRylFFFfPnecV8SfBz +KNGWWzjU6jaktFk48xD95P0BGe/pk188TRSQyvFKjJIjFWVhggjqCPWvryvPPiH8PE1+J9U0tFT VEHzoOBcAdj/ALXoe/Q+31mRZyqVsNX+Ho+3r5HDisNze/Hc8u8FeNr3wjf/ACgz2Mh/f25bGf8A aX0b+fQ9sfQWi65p3iDTY77TbhZYm+8ufmjb+6w7H/PQ18qzQy20zRTRvHIhwyOpBU+hBrW8OeJd R8M6gl3YTFc48yJuUlUdmH589R2r2s1yenjV7WnpP8H6/wCZzUMQ6fuy2PqavHvjp93Qf+3j/wBp 16lomqw67otnqcGBHcxh9oOdrdGXPscj8K8s+OUiF9DiDDeonYj0B8sA/oa+YyOnKnmUYSWqvf7m duKadBteR4/0rqfD3jzW/DGntZabJCsLymUh4gx3EAdfoorlq7Xw38NdX8T6SupWd1Yxws7IFmkc NkdeikfrX3eLlh1T/wBoty+ex5dNT5vc3LH/AAt7xV/z2tf+/AqrqfxN8Ravpk+n3UtuYJ12OFhA OPrWx/wpTxF/z/aX/wB/ZP8A43Wdr/wu1rw9olxqt3d2Dwwbd6xO5Y7mCjAKAdSO9edSllTnFU+X murevQ2ksRZ3vY4WvSPgvEknjO4Zxlo7J2Tnod6D+RNeb16V8E/+RwvP+vB//RkddWaO2Cq+jM6H 8SJ7Zq//ACBb7/r3k/8AQTXyUetfWetSJFoOoSSMFRLWVmJ7AKcmvkw9a8PhVfu6nqv1OrHbxO3+ E8Rl+IVi4IAijlcg9/3bL/7NXrV38UPCdoWU6jJJIjbWjW3kBBHXqoH615V8If8AkfIv+uEn8qg+ KOkf2T43uyoIivALlPct97/x4N+ldGMwdDG5j7Ks2rRTVrd3foRSqSpUeaPcPiB4zHjDUoVto3is LYERB/vMTjcxx9AAP8a4+KGSaVIokZ3dgqqoyWJ6AD1qKvo/wX4M8NafYWWrabC1xNLGJI7mZ9zA MOgAwARyOmeua7sViqOVYaMUnbZLz82ZU4SrzbbNXwfoR8OeF7HTnwZkTfMR/wA9GOWH4ZwD6AV4 Z8UHV/iJqpRgwzEMg55ESAj86+kK+YvH+D471gggj7QRx9BXgcOVJVsbUqy3af4tHVjEo0oxRzYr 6y0OJIPD+mwrnYlpEi59AgAr5NHUV9eW/lfZofs+PJ2Dy9vTbjjH4V08VS/d016/oTgFq2S18/fG KV5PHJV2yI7aNUGOg5P8ya+ga+a/iRd/bfH2qyBsiOQQqA24DYoUj25B49c153C8G8VKXaP6o1xz /dpeZyNfTnw+jSPwFpCooAMG78SxJP5k18xjrX1X4WjMPhHRo2Qoy2MAZSMEHYucj616/FEv9nhH z/Q58CvfbPnnx7ePe+OdZmbPy3LQ8+ifIP0WuaHJFaOso8euX6OpVluJAysMEHceDVa2lEN1DK6C RUcMyN0YA5wfrX0FGKhRio9EvyOSbvJtn0/4S0GLw54atNORcSKgec5B3SkZY5+vA9gKXxT4ih8L 6K2pTQPOiyKmxCAefrWvHIk0SSxsGR1DKR3B6GuL+KWl6lq/hSK00u2luJTdo0kcfXYFfk+2dtfm +HtisavrD0b1voe1K8Kb5Ohg/wDC7tN/6A91/wB/Fo/4Xfpv/QHuv+/i15Jq2h6nokscWpWUtq8i 7kEg+8PWs78a+yjkOXSXNGN16v8AzPNeLrLRv8D6n8LeIofFGirqUMDwo0jJscgnj6VDY+MLHULm 6SC3vPstq0iy3rRgQAoMtznP6VnfC1FX4daWyqAWMxYgdT5rjJ/ACoh4Gkudfnv7ye0hhmhngkjs YWia4WRSuZSWIJAOeB15r5R0MHHEVqdR2SbS+TPQUqjhFrqaVn41sb6RUSy1GNpoXuLXzYAv2pFG T5fzcnGCM46ipIfGOmXEOjzQrO41bd5C4XKBBly/OAFxzjNZfhnwOdBv4JpBpsi2yMsc8NqyTOSM ZZtxHQnOBzTtG8CrpmvX95NciWykSWO0tgCPIWVtzj+gq6lPLU5csnZLTz3Vvyf3iTq6XRoad4z0 7Ur63t47a9ijuiwtbiaHbFcFeTsOc9ASMgZqrp/xC0vUTYFLPUYoL2b7PDcSwAR+bkgISGPJx2yP yOKXh/wAND1K2kb+zZoLZmaOb7KRcNkHG5t23jI5A5xUtn4KuLbwz4e0pruEyaVqKXjSBTh1V3ba Pf5x+VVKnlibUW2tO/nr+X3iTrW1X9af8Et+PtUuNH8PR3dvcPAwuold05JQt8w/Kob3xfZXek6x GV1TTp7GJZJA0KrMEbo6Atg/iRWp4o0SXX9LitIpkiZLiKbc4JGFbJHFZms+ELjU77XLhLmJBqNk lsgZT8hU5yaywssI6UFV0abd/mvLtcqanzPl/rcwtX17UYZvEH2e+uBHb6TBPAWxlXbGW+p710tl 4tge9t9JS1vru9WGBriSKMFIvMUEFySDjnJIBqhfeCLi7OqFbuJftunQ2a5U/KyYyx9qNQ8FXd/q mnTm4soEszCwuIYGFydigFd+7BUkHqOK6pywFSPLJpafjZdt9b/MhKondf1qzodd1208PacL69Ep gMiRkxqGILHGSMjisp/HdjGG3abqpaGLzrlBbjdbIScNIN3GQN2Bk45xV7xRokniDS47OKZImS4i mLOMghWyRxWJrngP+0dfudVt/wCz5Gu0RZY763aQIVGAyFWGDjHB9K48HHAuC9u7PX9Lffr9xdR1 L+6a194w0+0vILWGG7vppbcXRFpD5nlwno7cjj6ZPtyKo2/imx1e+8NXdvcX9vDqH2oxwlUCSCMY bzeTjGCVxn3rJ163PhnXYb7T7xrZ5LBbVol0+SdGVeF2bTgNwMAnFO8MeDro6N4UkvcQnTo7vz4H BDMJ9wA9iAea61h8HToKrfe/z92XS1t7bGfPUcuX+t1/wTdsfHOl397bQpBeJBdSGK2u5YdsM7js rZz2OMgVXm+IOl28l4JLPURBZ3TWtzcCAGKJg23Jbd0J9OfUciqth4HvYDpVldanFNpWk3P2i1RY CsrsCSods4wM9hzT7vwVcXPhnxDpS3cIk1XUXvEkKnEas6NtPv8AIfzqPZ5Yp2v277X323tq/Mq9 a2xq6p4sttHuJEu9P1JbaJ1SS9EA8hN2OSc5xyBkDrUGiahdXHjfxTZyzO9va/ZfJjPSPdES2Pqa w9b+Hd7q02qH7fZML2bzo557YvPFyP3atuwqDHYZrp9L0SSw8T65qryoyal9n2IAcp5aFTk++ayq rBU6D9nK8nHz3vF9fmNe0ctVpf8AzJW8Q2i6tf6cY5/OsbcXEjbRtKnPA5znj0rNi8dafcPp8VrZ 39xNfQ/aEiiiUske4rub5sdQehNM1bwxqNxrt5qOm6jBbLe2n2W4WaAuVAzhkII557/rWZc+ALu6 0fSNNN5ZRizRFa7WBvPQhixMb5GARgYI96KNLL3FOct7d9NHfp37MJSq30RtXnjbTbO6uozbX0tv ZyCK6u4YN0MDcZDHOeMjOAcVKniuyl8SS6HDbXkt1EU8ySOIGNVZAwctnhcEDnv0zWBffDrzNXvr u3/syWG+nad/ttq0kkTNy2whgCM84NdDpOgHTPEetakHjMN+LdY41BzGIkKYP1oqwy+NO9Ntvl/G 6/4P3DTqt69/8/8AgEus+I7XRbi0tXgubq8ui3k29rGHdgBktyQAB9azP+Fg6QulHUWt75YRfnTy piG8S7d2duc47eue1V/GcJstX0rXYLw21zbCSLLWkk8bqw5DCPkH0/8ArVk+HfDeo6po0U92zRP/ AMJD/auZ4SjSxgY+5/CWOTitsNhcE8MqtX5773ei0t2/UmU587jE35fHdjE0iDTdVkaCNZbpUtgT agjIEnzcHHOBn9K07XxJYX2rw6bbGSR5rEX8coA8toi20c5znPbFY974U1Nb/VpdI1O3t4NXUC6S eAu0ZwVLRkMOSD0NMHgy702+sLnRNRit2g0/+z5DPCZMpu3bxgj5s8+lZunl0o6Ss2vPe3XTvord Bp1U9idfH2mPZaTcxWl/J/avnC3ijiVnzGcEEBu56fritfQ9ftdft5pbdJoZIJTDPBcJtkicdQw5 /nXCv4b1PRb/AMD6ZaXMZurQ3x+0GFmj+YbwGGQcEHb1HtXY+GtAl0VL6e7uUuL6+uDPO8abEBPR VGTwKWMoYKFHmpvV3tvtzNdtrL1CnKo5Wf8AWiOc0HxNc3niPXbzUm1G2sbIELDKirDAoUE78Etv 7jGe/tW/pPi+w1a+hsxb3trLcRGa2+1Q7BcIOrIQT255wcVDH4REieI4bq4DRaxJvHljDRjbjv3z zUOk+FdQi1XTb3VtRhuBpVu0FmsEJjzuXaXcknnb2HFVVlgaqk3o0la1+3prro79ASqRsv63/wAj Q8O+KrTxPE0tha3qQKM+bNEFQnP3QQTkjvj86r6n430/TLy9tja39z9hQPdS2sIdIcjIDEkc/wCT 0NWvCWiSeHfDNppU0yTSQb8yIMA7nZu/1riPFENxpepeILbTbqYnWIRutRp8krO5QriNx8uDnknp zgZFTh8Pha+LnCPwrbfXVK7du12EpzjTTe50h8VWCaut7Lc30du2iLf/AGdkXyxGzjDHBJ8zkDHT Het3RdYXWtPF3HaXVtGxGwXKKpdSAQwwTxz/ADrnLHwneobS6Z7YSJoEemNBPF5i+YCGJYZwy8EY rS8I+G5PDdndRyTxs1zOZvKhQrDDn+FASTj8f5UY2GB9m/Zy95Wt/X6hB1ObVaHRV1dp/wAeUH/X Nf5VyldXaf8AHlB/1zX+VRk/2/kZ4zocpRXiWo/GLX7PVLu1jstNKQzPGpaKTJAYgZ+eqn/C7PEX /Pjpf/fqT/45W64axnl94/rlM9FtfiboJ1G70/UZH0+6tpnhbzRuRipIOGA9j1xXQJ4j0OSFpU1n TmjT77rdIQv1OeK+X9U1KTVdVutQlijiluZWldYwQoYnJxkk9feqP517c+GMPNJxk4vqtznWOkul z0X4satomra7bSaU8U0scRW5uIiCrnOFGe5AB554I9K86zSUV7+GoLD0o0ou6Xc5Jzc5OT6n0N8I UnTwIhlYmN7iRoQRjCcAj3+YNXG/G6RDr+mxBvnW1LMMdAXIH8jWZpnxZ1nR9MttPs9P0xYLdAiA xSZ47n5+p6mue8U+Kb3xbqUd9fxQRyxwiECBSF2hmPcnn5jXiYXLK8Mxlip2UXf8djpqV4uiqa3O fr6J+EaMvgKAspAaeUqSOozjP5g187V3WgfFHWfDuiW+lWlrYPDBu2tKjljuYsckOB1J7V25zg6u Lw/sqW909TLDVI0580j6I7VwfxekCeBJFL7d9xGoGcbuSce/TP4Vwn/C7PEX/Pjpf/fqT/45WN4n +Imq+LNLSwvreyjiSYTAwI4bcFYd2PHzGvAwGQYmhiYVKlrJ33Oyri4Sg4o43HOK9R+CUAPiPUZy TlLTYB67nU/+y15eK6Lwr4wv/CN1PcWMNtK06BGE6swABzxhhX1GYUJ18NOlT3aOGjJQqKT2PoXx hLHB4M1tpGwDZTKOO7IQP1Ir5X7132sfFfW9b0i5064tNOSK4TY7RxuGA9suR+lcEelcOSZfUwVK UKu7f6GmKrRqSTid98IFJ8dxkAnFvITjtwK7b4zaN9q0G11WNcvZy7JCF/gfjJPswX/vo15T4W8U 3vhLUZb6wigklkhMJE6sV2llPYjn5RXQ6r8V9Z1nSrjTryw00wXCFH2RuCPQj5+oOCKjFYHEyzGG Kp25VZb9Nb/mVTqwVFwluzz+vcPgxr32nSrnQ5XG+2bzoQTyY2PzYHoG/wDQ68PrY8Pa7d+G9Yh1 Oy2GWLcMOCVYEEEEAjPX19K7sywf1zDSpdd16oxo1PZzUj6qr5g8c2r2njjWY5AQWu5JBkY4c7x+ jCuo/wCF2eIv+fHS/wDv1J/8crlvE/im48VXkd1eWNlBcKu1pbZGUyDtuyxBx615GSZZisDVk6tu Vq2504qvCrFKO5z2e9e+eBPiHo914etLLVL6K1vbdVhYzttEgAwrBjx0Aznv9a8DzSV7OPwFLG01 CppbZo5qNWVJ3R9Oav498N6VYSXP9q2ty6g7IbaZZGdscD5ScfU8V82313LqF/cXkx3SzyNK5Hdm OT+pqtSVll2V0sCpcjbb6sqtXlVtcnhikmmSKJGeR2ChVGSxPQAetfWOnRPBplpDKNskcKKwznBC gGvlvQ9Yl0LVodRhtreeaE7kWdWKhuxwCOR2rtv+F2eIv+fHS/8Av1J/8crhzzL8RjeSNK1o33fc 0wtWFK7l1KvxW8PSaR4qkv0QC01AmVSo6PxvB98/N/wKuAz0rudd+Jup+I9KfT9Q07TDExDKyxyB kYdGU7+CMn8zXC16mAjWhQjTr/EtPVdDGs4ubcNme0fD/wCJ2nW+kQaTrtw0MsHyQ3DKSrJ/CGIy QR06YwBXo8fiPQ5oDcR6xYNEv3pBcphfqc8da+UBS8+9eZi+HcPiKjqRk4337G1PFzirNXPRPi7r FnqviS0WwvILmCG1ALwOHUOWYkZHB421513oNFexhqEcPSjSi9Ec85ucnJn038PIkh8AaQsY+Uwl sZ7liT+pNdPXz3o/xY1vRNJttOt7TTnit02I0kbliPfDgfpV3/hdniL/AJ8dL/79Sf8AxyvjcVw9 i6tedRWs23v3Z6MMXTjFI93orwf/AIXZ4i/58dL/AO/Un/xyj/hdniL/AJ8dL/79Sf8Axyuf/VnG +X3l/XKZ7xRXg/8AwuzxF/z46X/36k/+OUf8Ls8Rf8+Ol/8AfqT/AOOUf6tY3y+8PrlM94orwf8A 4XZ4i/58dL/79Sf/AByj/hdniL/nx0v/AL9Sf/HKP9Wsb5feH1yme8UV4P8A8Ls8Rf8APjpf/fqT /wCOUf8AC7PEX/Pjpf8A36k/+OUf6s43y+8PrlM94orwf/hdniL/AJ8dL/79Sf8Axyj/AIXZ4i/5 8dL/AO/Un/xyj/VnG+X3h9cpnvFFeD/8Ls8Rf8+Ol/8AfqT/AOOUf8Ls8Rf8+Ol/9+pP/jlH+rWN 8vvD65TPeKK8H/4XZ4i/58dL/wC/Un/xyj/hdniL/nx0v/v1J/8AHKP9Wsb5feH1yme8UV4P/wAL s8Rf8+Ol/wDfqT/45R/wuzxF/wA+Ol/9+pP/AI5R/qzjfL7w+uUz3iivB/8AhdniL/nx0v8A79Sf /HKP+F2eIv8Anx0v/v1J/wDHKP8AVrG+X3h9cpnvFFeD/wDC7PEX/Pjpf/fqT/45R/wuzxF/z46X /wB+pP8A45R/q1jfL7w+uUz3iivB/wDhdniL/nx0v/v1J/8AHKP+F2eIv+fHS/8Av1J/8co/1axv l94vrlM94orwf/hdniL/AJ8dL/79Sf8Axyj/AIXZ4i/58dL/AO/Un/xyj/VrG+X3j+uUz3iivB/+ F2eIv+fHS/8Av1J/8co/4XZ4i/58dL/79Sf/AByj/VrG+X3h9cpnvFFeD/8AC7PEX/Pjpf8A36k/ +OUf8Ls8Rf8APjpf/fqT/wCOUf6tY3y+8PrlM94orwf/AIXZ4i/58dL/AO/Un/xyj/hdniL/AJ8d L/79Sf8Axyj/AFaxvl94vrlM94orwf8A4XZ4i/58dL/79Sf/AByj/hdniL/nx0v/AL9Sf/HKP9Ws b5feP65TPeK6q0/48oOf+Wa/yr5d/wCF2eIv+fHS/wDv1J/8cr6W8MXT6n4T0a/mVRLc2MEzhFOA WjUnHtzXoYHJcVh781tfM5sRiITtY+L9d/5GHU/+vuX/ANDNZ1aGu/8AIw6n/wBfcv8A6Gaz6+wO EKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAK+3fAv/ACT3w1/2CrX/ANFLXxFX274F/wCSe+Gv+wVa/wDopaAP jLXf+Rh1P/r7l/8AQzWfWhrv/Iw6n/19y/8AoZrPoAKKKKAFoxTgMVo6JapdanEkoBQZYg98dqUn yq7NaNKVWpGnHduxmlSOx/Kiu/1KCyltgt2VQEgK/AIPsaxzoOmSMfK1AYHberVjGvFq7R6uIyWr TnywkpfNJ/dc5eiuqbwnGwBS7YfVM5/WhfCaA/NdsR7R4/rT9vDuZf2LjL25fxX+ZyuPeiuvXwrb BvnnlI9AAKkHhmwU9ZT7Fh/QUvrNM0jkWMe6S+ZxmKK7dfDmnK2TG7D0Lnmn/wBgaZ/z6/8Aj7f4 0vrUDVcPYp9V97/yOFpfxrvF0TTl6Wi8/wB4k/zNO/sbT/8An1T8qX1qPYtcOYjrJfj/AJHAYorv DoWms2Tarn2LD+Rpp0DTCCBbY997cfrR9ah2Ynw5iuko/e/8jhcGjFdr/wAI1p/91/8AvukPhnTz 0Eo9w3+Ip/WYGbyDF+X3nF0ua7A+F7EjiSb/AL6X/CoT4UiOdt04+qA/1prEUzOWR4xbRT+aOUor p/8AhEhji8P/AH7/APr1H/wik3/PzH+Rqvb0+5k8nxq+x+K/zOcoroW8KTjpPET6EkUn/CKXf/Pa D8z/AIU/aw7kPK8WvsM5+jFdB/wil3/z1g/M/wCFH/CKXf8Az1g/M/4U/aw7k/2biv5Gc/ijFdB/ wil3/wA9YPzP+FH/AAil3/z1g/M/4Ue1h3D+zcV/Izn8UYroP+EUu/8AnrB+Z/wo/wCEUu/+esH5 n/Cj2sO4f2biv5Gc/ijFdB/wil3/AM9YPzP+FH/CKXf/AD1g/M/4Ue1h3D+zcV/Izn8UV0H/AAil 3/z1g/M/4Uf8Ipd/89YPzP8AhR7WHcP7NxX8jOforbbwzfgkDy29w/Wk/wCEZv8A+6n/AH1S9pDu L+z8V/I/uMWitr/hGb/+6n/fVH/CM3/91P8Avqj2sO4f2fiv5H9xjcUcVrHw7qQb/UqffzF/xpv/ AAj2p/8APsP+/i/41XtId0S8DiV/y7f3MysUYrV/4R7VP+fcf99r/jR/wj2qf8+4/wC+1/xo9pDu hfUcT/z7l9zMrFGK1f8AhHtU/wCfcf8Afa/40f8ACPap/wA+4/77X/Gj2ke6D6lif+fcvuZlYoxW uvh3USeYVA9fMX+hqRPDN8zYIjX3L/4VPtYdy45fipbU39zMSiuiXwpcHrPCPpk/0qRfCRI+e8wf ZM/1pe3p9zWOUYyW0PxRzNFdZ/wikH/Pw/8A3zUo8LWOOZJ/++l/wqfrFM3WRY1/ZX3o489aTrXX SeFbdidk8gHbIB/wqhc+F7mPLQSJKB2+635dP1pxr031MquT4ymruF/TUwKSppoZIHKSIysOoYYI qKtjzHFxdmJRRRQIKKKKACiiigAooooAKKKKACiiigAr7d8C/wDJPfDX/YKtf/RS18RV9u+Bf+Se +Gv+wVa/+iloA+Mtd/5GHU/+vuX/ANDNZ9aGu/8AIw6n/wBfcv8A6Gaz6ACiiigBa0NIuxZX8crf dzhvoaoUAd6TSaszWlUlSmpx3Wp13iKxNxbLdRfMyDnB4K9c1yOSD1xXZeH7sXmnG3lwzRjaQe6n p/h+VczqVobG+khOdoOVJ7r2rCi7NwfQ9fNaaqRhjKe0t/JlZZZEbKuwPrmrSarepgC5l44ALnH5 VS496St7J7njxqzh8LaNZPEGophfPBA/vKD/AEzU6eKL1TysT/7yn+hrCoqXTg+h0RzDFR2qP7zo R4ruc/NBCR9CP60v/CWT/wDPtH+Zrnc0ZqfY0+xqs2xi/wCXjOmXxaQPnswT7Pj+lO/4S5P+fM/9 /f8A61cvRR7Cn2LWc41fb/Bf5HVjxZCetqwPs4P9KcPFVuSM28gGeSCK5PIpM1P1en2LWeYz+b8E dl/wlFh/dn/75H+NNbxRZj7kcpPoQB/WuPz7UUfVqZTz3Gd19x1jeK4QDttWPplgKgfxZIT+7tUX j+Jyf8K5s4pKaoU+xnLOsbL7dvkjdk8T3rH5REn+6p/qaqvr2pSYBuSMf3QB/IVmZozVqnBdDmnj 8TPeb+9l46rfE5N3Nn2cioWu7lyS08hJ6ksar4o49KpRS6GEq1SW8m/mTfapv+er/wDfRo+1Tf8A PV/++jUNFFkL2s+5N9qm/wCer/8AfRo+1Tf89X/76NQ0UcqD2s+5N9qm/wCer/8AfRo+1Tf89X/7 6NQ0UcqD2s+5N9qm/wCer/8AfRo+1Tf89X/76NQ0UcqD2s+5P9qm/wCez/8AfRqRNQu4xhLiVRno HIqr9a0NH0ufWdWtNOtv9bcSBFJ6LnqT7AZJ9hQ1FJt7IFVqX0bI/wC1b8f8vk//AH8NP/tnUP8A n6k/Oo9QsZtN1C5srhQs1vI0TgcjcpwcVUpJRauti1ia0dptfNmqviLUlx+/4HYov+FTp4nvlzuE T/7ynj8jWFmjNJ04PoaxzDFR2m/vZ0i+LJQw32yH1wx5/nUy+LIv4rVh/wADz/QVytFQ6FN9Dojn ONj9v8EdmviewbAZJh65UYH61KniHTXzmZk/3kPP5Vw/NLmpeGgdEeIMWt7P5HerrWnN0uk59QR/ Spxe2jHAuoGz2EgrzrNOBFS8LHubx4jrdYr8T0b7TB/z3j/77FH2mD/nvH/32K843H1NG4+ppfVF 3NP9ZJ/yfj/wD0U3dsv3rmFR6mQCon1SxQ4N3F+Bz/KuALGm01hY9zOXEdX7MEd2de0wZzdDPsjf 4VCfEmn46y/98VxVLn2p/VYGT4hxT2SXyf8AmdkPE9gTgrMPfaP8a0LTULW8H7mQFu6nhh+FeeZq WN2RgykqRyMcYolhYtaFUeIMRGX7xJr7j0C6sbe9TbPGrccN0I+hrgrmA2t1LC3VGIrvNPuftenw Tk5LIN31HB/WuU8Rpt1eQj+JVz+X/wBaow7ak4M688pU6lCGIgtXb5poxaKKK7D5QKKKKACiiigA ooooAKKKKACiiigAr7d8C/8AJPfDX/YKtf8A0UtfEVfbvgX/AJJ74a/7BVr/AOiloA+Mtd/5GHU/ +vuX/wBDNZ9aGu/8jDqf/X3L/wChms+gAooooAXFFGantrdri4SJfvMwUfjSKjFyaS3NnwxFK180 ikiNFIb3z2/r+FWfFkS7IJcfPkrn261uWVpHY2ywx9F6n+8e5rm/FFz5l1Hbg8RLk89z/wDWx+dc cJ+0rXR9XicOsHlbpzd27fffp6I52iiiu0+SCiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo ooAKKKKACiiigAooooAKKKKAOts/hz4rvoRNb6QzRMAys0sahgRkEZYZHuK9B+G/w+1PQtbbVdZh iiZISsMYkDsGbgk4yOmR1/irnPht461DTNRtNDmDXVjcSiONB96FmIAKk/w56j3J+vvFfIZ3mONo N4eajyy2avdr7z0cLRpytNXujx34reDL261iHV9K0+e5+0JtnWCMuwdeAxUDPIx/3z715Pc2lzaP subeWBv7siFT+tfWl7dRWNlPd3DFYLeNpZGAzhVBJOPoK+dvGvju98XTiFVNvp0bExQA8sezP6nH 4D9a6cgx2IrwVJwvGOnNf7l5kYulCL5r6vocXRRRX0xwhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA BRRRQB1/hafdbSwE8o24fQ//AKv1qh4pAGoRkDrGCffk1B4duPK1ZFJ+WRSp/mP1Aqx4r/4/of8A rl/7Ma5lG1b1PoJ1va5Sk94uxz1FFFdJ8+FFFFABRRRQAUUUUAFFFFABRRRQAV9u+Bf+Se+Gv+wV a/8Aopa+Iq+3fAv/ACT3w1/2CrX/ANFLQB8Za7/yMOp/9fcv/oZrPrQ13/kYdT/6+5f/AEM1n0AF FFFADqt6fcC2voZj0VwT9O9U6KTV1YuE3CSkt0emKwZQykEHkEd64TWA41S435zvJGfTt+mKt6Tr r2IEU2Xgzxjqv0rburSx1yLzIpV8wDhl6/iK5IJ0Ze9sfU4mpDNMOlSdprXlf9fccRR+NbN14cvY MlFWVfVDz+VUX0+7iGXtplHqUIrqU4vZnzdTCV6btODXyKlH41aSwupThLeVv91Canj0TUJCMWrj Prx/Ohyit2TDD1pfDBv5MziMU8AscDJJ7Cuhh8OJCnnX9ysUeeinr+J/+vTm1fTtOHl2FsHfvIe/ 58/yqHUv8KudkcvcFzYiSgvPV/cjOh0K/nG4QFF9XOM/geauDwrck/NPCB9Sf6VBN4lv5G+Rkj/3 V/xzTE8RairZaZWHoyD+gqX7Z7WN4PK4aSUpeehfHhP5cm8+b0EfH86ifwpcqMpNE3tkipoPFZzi 4tx9UOP0P+NakGu6fcYAm8tj2cY/Xp+tZOVeO56VLD5PXVoOz821+ZzEuhahFy1sWH+wc/oOazmj dGwykY9RXpCOki7kdWU91ORSPFHKMSIjj0ZQRSWKa+JDqcPU5a0pteup5tjrR/DXc3Gg2FwD+7Mb eqHH6dK5fU9Kn02T5vnjY/K4HB/wNdFOtGeiPGxmVYjCrnlrHujMooorU8wKKKKACiiigAooooAK KKKACiiigDv/AIT6YL3xtHcuR5VjE87FumcbRz2OWz/wE10njj4q5Mmm+HJSuDtlvV69ekf/AMV+ XrXlkGpXltY3VpDOyQXO3zlXHz7c4BPXHJ46dPQVRxxXnVMtp18V7etrZWS6erN413CHJH5n0N4Z 8XweMPB99BOEOpRWrx3EBAPmDZjeB6HuOx49M/PR4P0rR0TWbzQdWh1CykKTRH8GXup9iKzc1WCw EcJUn7P4ZWaXbe4qtZ1Iq+6G0UUV3mIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAT20xguop h1Rg35HNdB4qUN9lmUkqwYZ7diP51zeOK6a0I1rRjaMf9IgHyE9wOB/gfwrKeklPsepgX7SjUw3W STXqtbfM5aipGUoxVgQQcEEdKjrU8vYKKKKACiiigAooooAKKKKACiiigAr7d8C/8k98Nf8AYKtf /RS18RV9u+Bf+Se+Gv8AsFWv/opaAPjLXf8AkYdT/wCvuX/0M1n1oa7/AMjDqf8A19y/+hms+gAo oooAKKKKAFzUiSPGQUYgjoQcEVHiigabWqNSHXdRh4W4Zh6Nhv51aHim9UAGOFvcqef1rBxR0qHT g90dUcfiYqym/vN5/FF6wwEhX3AP9TUD+IdRkBHnAA9lUf8A66yKKFTgug5Y/Ey3m/vJ7i6muH3S yO7erHNQUUGqOWUnJ3b1Eooopki0oBrY0fwzrGvPt0zTp7gDq4GEH1Y4A/Ou+0v4J38219U1KG2X vHApkb6ZOAO/rXHiMww2H/izSfbd/cjWFGpP4UeXw3M1u+6GVkPqpxWxbeJrqPAmRZ1/75P5j/Cv abH4U+FNNTzbmGW7KDcXupsKMdThcDH1zV9/E/gnw5mOO9022xwVtIw2OTwRGD3zXkVM8pVHy0KU pv7v82ehQeIoaxqcv9dtjzPT0vdRVjHpWoLt+9m2cgfiBj86Zc28dzA8Mq5Rxg+3uK7u7+MPhi33 CL7bckEgGOEAH3+YjiuC1LxlpWs6zvtbF7ISD5y7ggvn0A4+uarC1MVUk5TpOC/r5nvYXNadT9zi JJ30v/mZ1j8M9d1WEz2P2WSLcVBM4DDHqO1aqfBbxG0YJu9MQkZKtLJkexwmK1dI1u70Scy2xVlY YaJ87W9M+/vVfUPi94lsrlo203TUX+HckjZH13jP5Vc62ZyqONHlt57nl5hltPCy5mnyv8DIk+EH ilXZUSzcA4DLPwfcZGapzfCzxfDvP9lCRUBO6O4jOfoN2f0roR8b9S4zpNqTjnDtV6D45LlBcaAQ MDe0d3+oBT9M1Hts6j/y7i/69TzOXDP7T/r5HnF34R8Q2QZrjRb5EXGX8hioz/tAYrIkhkhkMcqM jqcFWGCPwr3iz+M3h2cAXNvfWz4JOY1devQEHP6Vsx+O/BesoIJNStHXI+S6iKKCQf74A9ef8aX9 rY6l/Fw7+X/DP8w9hSl8Mz5qI96Svo+++HHg/XIPtEFokQk5Wexl2gjJ6DlOvtXHap8EpkBfSdVS T0iuU2n/AL6XPv2FdFHPsHUdptxfmiZYSottTyGiuh1rwbr3h/Lahp0qQgkCZPnjP/AhkD8cVz+P avYp1YVI80GmvLU5nFxdmhtFFFUIWgU7GTgZq3Fpl5ONyW0hHrsOPzpNpbmkKc5u0Ff0KVKKvnSN QAJNrJx6CqkkMsTbZI2U+jDFCknsxzo1IfFFr1RDRRRTMgooooAKKKKACiiigAooooAKKKKACiii gAooooAXtVyxvJLG5SeM9Oo9R3FU+9FJq6sy4TlCSlF2aN7XrWN1j1K25in+97N/n+VYRya3tDmW 6gl0uflHBMfqG9v5/hWPcQvbTvC4wyHBFRT09x9PyOzGxjNRxEFpLfyfX79yvRRRWhwBRRRQAUUU UAFFFFABRRRQAV9u+Bf+Se+Gv+wVa/8Aopa+Iq+3fAv/ACT3w1/2CrX/ANFLQB8Za7/yMOp/9fcv /oZrPrQ13/kYdT/6+5f/AEM1n0AFFFFABRRRQAUUUUAFFFFABRRRQA7tRjPSus8LeANZ8UOrxRfZ rLPzXUwwv/AR1b8OPUivZtG8JeGvA1gb2ZovNjGZL66IyD6L2XnoBz25ry8bm9DDPkXvT7L+v+Cd FLDynq9EeSeHPhfr+vBZ5Yhp9oeRLcqQzD/ZTqfxwPevUdJ+Gvhbw9a+ffRR3kiDL3F4RsH/AAE/ KB9c/WsPxD8ZrOBWh0C2NzJyPtE6lUHuF6n8cV5ZrXifWPEE2/VL6WcL91OFRfoowAffGa89Uczx +tSXsodlv/X3ehrzUaPwrmZ7frPxT8M6KhgtJDfSoNqx2oHljHQb+mOO2a881j4w+Ib9itgINOiy cbVEj492YY/ICvOjQCR3rtw2R4Ohq48z7vX8NjKeJqS629DS1PXdU1dg2oahc3JByBLKWAPsOg/C syijvXrRjGKtFWRg23qxKAcGiimI6nSPEC7Vt7xjnosh/r/jW7cW1vfW3lyKrowyrDt7g155itPT dZuLBthJeHPKH+npXLUoa80Nz6HA5xaPsMSrx2v/AJ9w1XSJdObcMvCx+V/T2NZVegwXNpqlqwUh 1YYZCOR9RXH6tpzafdsgBMTcox7irpVXL3ZbmOZ5dCklXw7vB/gZtFFFbniF6y1K90+TzLG8uLaT +9DIyH8wfc12OlfFvxNp2FuZIb+IcbZ4wGH0ZcH881wNFY1sLRrq1SCfyLjUnD4WfQGi/F7w/qW2 O+WXTpj/AM9Pnj/BgM/mBWhf+B/CHim2a5t4bYM+cXNg6jnufl+U/iP5184cZrd8O3et2V55+jXM tvIMbmQ4U+zA8N9CDXiVcjjSbqYSo4P10/z/ADOulXnVapyjzX+86TxB8Jte0lnlsEGpWyjOYRiQ D3TqT/u5rmtO8PTXWHn/AHMXuPmb6D/GvQ9U8b6hPYRQaheRW424kMKld59SMk/gPyrb0DwlYazp /wBrXV451YYBsyDsPuSOvsQKuOPxGHoXxbV+jSZ61PLcLSlzV5a/y9fmcNaabaWI/cxAN3ZuW/P/ AAq3Vbxd4P8AFOgNLcrPJeWC5bz7cEbF/wBtRyv15HvXCpfXUZylxKv+65FdlGMcRD2kJqSOn+26 GH/dwpNL5I9DpkkaSxlJEV1PUMMg1xlt4gvoCA0pkX0cZ/XrXV6ffx6hbCROGHDrnkGipRlT1PSw mZ4fGPkWj7M5bWdJOnzeZECYH6H+6fQ1j5wa9IlijniaKVA6MMEGuL1XSJdPk3ffhY4Vv6H3rpoV uZcstz5/N8qdCTq0l7r38v8AgGTRRRXSeAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFq0na 2u4ph1Rga1vE9ui3MNynSZOfcjHP5EVhda6TV/8ASPD9ncc5XA6e2CfzFZT0mn8j08L+8wtWm+lp L5b/AIHMUUUVqeYFFFFABRRRQAUUUUAFFFFABX274F/5J74a/wCwVa/+ilr4ir7d8C/8k98Nf9gq 1/8ARS0AfGWu/wDIw6n/ANfcv/oZrPrQ13/kYdT/AOvuX/0M1n0AFFFFABRRRQAUUUUALRRWtofh /UPEWoLZadAZZDyx6Ki5xuY9hSlOMIuU3ZIaTbsihb2813OkFvE8ssjBUSNSzMfQAdTXs/gj4UQ2 ix6j4iiWa46pZnlE6YL/AN4+3T610fhnwbo3gWwkvbieJrlU/fXs+ECDPRcn5RyB15/SvP8Axv8A FO41VX0/Qnkt7I8SXH3ZJR6Duo6+59uRXzdXHYjMZujgtIdZf1/w/odkaUKK5qmr7HaeKvibpHhx XstOVL29jGzy0OIoiB0LD0/uj6cV4rr/AIk1TxJdm41O6MhH3IxwkY9FXoP5+prF70lepgcroYNX iry7vcxqV51N9hKKKK9EwCiiigAooooAKKKKACiiigCxb3MtrOs0LlGXoRXUrc22v2LQPtjuVGQC e/qPb1FchUsM0kEiyRna6nINZzgparc78JjZUbwlrCW6/wAvMJoXgleOQYdTgiox3rqJ7SPxBbR3 Vu8cdwBtlU5A/r/n6VSHhq+L7SYgP75bj/Gkqsbe87Mqrl1bmvSTlF7NdjDJzUsMEs77IkZm9AMm toaZptmN97eLIe0cXU/5/CkfxAsCmLT7VIF/vkZY+/8A+vNPnb+FCWDhT1xE0vJav8NF8yS20OK2 jFxqkyxr2jB5PscfyFNu/EBWPyNPiEMfQNjn8B2rFnuZrh980jO3qxzUBpKnd3nr+Q5Y72cfZ4aP Kur6v59PkSSStK5eRmYk5JJyTWjo2vajoF6LrTbuSCT+LaflcejKeGH1rKorSUIyi4yV0zg5ne/U 968KfFrT9UEdprQWxuzx52cQv7kn7n48e9P8ZfC/T9bhe+0RYrS/IL7F4inz69lPXkfj614Hmu/8 E/Em88Nsllfb7rS+AFz88PPJQ9x/s9PTHOfnsRlNTDT+sYB2fWPRnVCvGa5Kv3nG6jp93pd69pfW 8lvPGcNHIMEf4j370adfyafcCWPB7MD0I9K+iNU0fw98RdCS4jlSTI/c3cWN8TY+6e/cZU14T4n8 K6h4V1NrS8j3RnmGdR8kq+o9D6jt+tduAzOni70qi5ai3T/QThUw8lUpv0Z01tdQ3dus0Lbkb8wf Q1LJGkkZjkUMjDBUjINcFp+pTafNujbKk/Mh6MK7ayvob+DzYW6feU9VPvWlWi6butj7HLszp4yH JPSXVd/Q5bWdF+wnzocmBj0PVD6H296xcHHtXpMkaSxNHIoZGGCPUVw+rae2nXZUAmM/MjH0rooV ub3ZbnhZxlaw79tTXuvp2f8AkZlFFFdJ4AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA7tXU2yC78J SRgZMYOPXg7v5Vy3Wuq8LyiS1ubZsEAggHvkYP8AIVlW0jfserlFpV3Tf2otfgcpRVm6tzb3UkLd UYiq/bNaLXU8yUXGTi90NooopkhRRRQAUUUUAFFFFABX274F/wCSe+Gv+wVa/wDopa+Iq+3fAv8A yT3w1/2CrX/0UtAHxlrv/Iw6n/19y/8AoZrPrQ13/kYdT/6+5f8A0M1n0AFFFFABRRRQAtFFdF4V 8MXnivVo7O2QrEpDTzdokz1+vXA7/mampUjTg5zdkhxi5OyDwt4T1HxVqAt7GMrCrDzrhh8kQPr6 ng4Hevd0j8PfDfw3ubEMQwrPtBluH/8AZj19gPQVaVNK8EeH47e2jCRID5cefnmfuSfX1P8A9YV4 v4nh8QeJr77Zf3Fu+PljhRiFjX0AI/Xqa+YvVzmpr7tFP5v+vwN6mIoYP3ZSXO/wKHi/xtqPi27B kPkWcZPlWyE4HPVv7zdOfyArk62JPDmqRgk224D+66n9M5qrJpd9CCXtJwB1Ow4/OvpaVKnSgoU1 ZI5PrEKjvzpv1KFFSNG6MQ6lWHYjFR1oWFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAODFTkEipGnl cYMjsPQsTUVFKxSlJaITJPeiiimSFFFFABRRRQAUUUUAdF4X8U6h4V1Nbuzk3RnAmgY/JIvofQ+h 7fpXu9jqGg/Enwy8TqGVxiaBmHmQP6g/ybv+Yr5nrU0TW73w/qcd/YSmOeM/VXXurDuDXlZjlccT +9pPlqLZ/wCZ0Ua7h7stUbnjTwLf+Fb1iEebTXbENzj16K3o3H49vQc7p1/Jp9wJY8HsQehHpX0H 4X8UaX4/0Ka1uoYvtHl7buzfoR/eXvtz+IP4E+O+OfB03hLVtgy9hOS1tKTk4HVW9xkfX+WWX5hO pJ4XFK1Rfiayi6TVak9PyNi1uY7y3WaJgVbr7H0NRajYrf2jRPgN1Rv7rVyOkam+n3AySYXOHX+o 967aKVJY1kRgyMMqR3FdNSm6Uro+wwOMp5jQcJrXZr9TzuWJ4JWjkXa6HBFRetdjruj/AGwfaYB+ 9UfMv98e3vXHsMHB61206inG6PkMfgp4Sq4S26PuhlFFFaHCFFFFABRRRQAUUUUAFFFFABRRRQAt bvhiXy9SaM9JEIx7jn+hrCHer2lTeRqcD5wN4BPseD/OoqK8GjqwVX2eIhPs0aPim28u9S4H3ZV5 PuOP5YrA7V3OvWv2nS3IGXiO8fQdf0/lXD9qihLmh6HZnWH9jim1tLX/ADG0UUVseSFFFFABRRRQ AUUUUAFfbvgX/knvhr/sFWv/AKKWviKvt3wL/wAk98Nf9gq1/wDRS0AfGWu/8jDqf/X3L/6Gaz60 Nd/5GHU/+vuX/wBDNZ9ABRRRQAUUUUAaWkaXc6zqttp1mu+e4cIo7D1J9gMkn0Br6Hgi0j4b+Dtz 4EcKgyMoG+eU+nqSenoB6Csb4YeDR4f0w6tqCBL+6jyA3BhiODg+hPBPpwPWvOviR4ybxNrJtraT OmWjFYQp4lbu5/kPb6mvmcROWa4v6vB/uofE+7/r9Wd0EqFPmfxPYNU+I93q9+9xdWabekcayEBB 6dOfrVIeNFzzYf8Akb/7GuSor6KnRhTgoQVkjyKuDo1Zuc1dvzf+Z2Q8Y22ebWT/AL6FTf8ACX6f /wA87n/vlf8A4quI/Gj8arlRj/ZmH7fid0/ifSZRtfey+hjzUMt54Xm++IvqsTr/ACFcVml/Gnyi WXU4/DKS9GdZJY+GpCdtxsz/AHXPH5g01tB0ZzmPVEVfRpFJ/pXK8+pozSsarDTW1RnSf8IxauCY 9XgYj0Ax+e6o/wDhFx/0Erb865/cfWjcfWnqV7Kt/P8Agjov+EQvG+ZLi2dT0O5uf0pP+EPvv+e9 t+bf/E1z24+p/OjcfU/nRqHs6/8AOvu/4J0x8HzAFjeRgDkkqaYnhZGYBtStwD/d5P5Zrnd59aua UN+p2qkZBlTI9two1JlTrxi37T8Ebj+EYY2xJqaoeuGjA/8AZqePBa978/8Afr/7Kq3i186pGoPK xAH8yawY7iaFt8UrofVWINLUxpwxNSmpqpa/kjp/+ELX/n/P/fr/AOypP+ELH/QQ/wDIP/2VZUPi PUoRj7RvHo6hv161oxeMrhf9baRt/uMV/nmjUynDMI7ST+7/ACJP+EKH/P8An/vz/wDZU1vBsgPy XakepQj+tO/4TUf8+B/7/f8A2NSr4yh2/NZyBvQOCP5Ue8ZXzJb/AKFU+DZ8cXcZ/wCAmq8nhPUU +75UnGflf9OcVpjxjbZ5tZP++hVlPFmmtnPnLj+8g5/I0aj9tj47xv8AL/I5iXQdTjzmzkOP7uG/ lUEulX0Cq0trIqt0O3Nd9Z6rZX8hjt5t7BdxUIw449R71ZmmhgUPLKkak43OwUZ9OaV2L+068Zcs 4a/M8ueKRGwyMD6EYpm0+hr04ahYk4F5b/8Af1f8aebm2IIM8RB4ILinzGn9pzW9P8f+AeX4PpSY Nemf8S//AKdf/HaiNppMvyeTaEsf4QoOfw5o5ilmi6wZ5zxSZr0V9A0tjk2aj6Mw/karSeFdMfO1 ZU5/hfp+eaOZFxzSi900cxomt3nh/U4dQsJDHLGeR2de6kdwf89K+hLefSPiR4PIIHlTDa6ZBe3l Hp6Edj3B968Zl8G25J8u6lX03KG/wrofBP2vwjrPmLdibT5wFuIiCpPow68j9Rkd+PIzbA+3gq1L SpHVefl/kd+FzXDp8spaPumcDr2h3nh7WJ9OvU2yRNwwB2uvZlz1BqfRNY+xv5ExJgbp/sn1r2/4 g+EIvF2hrdWIVtQt0L27r/y2Q87M+/b39Mmvnh42jco6FWU4KsMEGtcuxscfQ974lo159/mejCpU wdVVKb9PNdj0dWDKGUgg8gjvWTqmhQ326WLEc/X2b6/41g6brs9gBEwEkIP3SeR9DXR2uuWN1gCY Ruf4X4/XpWrp1KTvE+pp47B5hS9nVsn2ffyZxl1ay2spjmQqw7H+Y9qrmvRLyygv4PLlUEY+Vh1X 3BrjtS0qbTpfn+aJj8rjofr6GuilXU9HueBmGU1ML78dYd+3qZdFFFbnjhRRRQAUUUUAFFFFABRR RQAUqnDA+9JRQB6PaSi6sopDhhIgLA+uOa4bUbVrS/mgPQNx7jt+ldL4ZuPN01oieYmIA9jz/PNV vFNr8sd0q/7LH+X9f0ripPkquB9ZmNP61l8MQt0r/o/xOVooortPkwooooAKKKKACiiigAr7d8C/ 8k98Nf8AYKtf/RS18RV9u+Bf+Se+Gv8AsFWv/opaAPjLXf8AkYdT/wCvuX/0M1n1oa7/AMjDqf8A 19y/+hms+gAooooAXOa7/wCGHhP+39e+2XUQawscSOD0kf8AhT3HGT9MHrXE2VpNf30FnboXmncR xr6sTgV9IWkFh8O/Av70hlto98rL1mlbrj6nAHoMelePnONlRpKlS+Oei/r8jpw1NSlzS2Rzfxa8 XnTNPGhWUu26uV3TurYMcf8Ad47t/LPrXhecVoavqlzrOq3Oo3jb57hy7HsPQD2AwAPQCs411Zbg o4Ogqa33b8yK9V1J3EoooruMQooooAKKKKACiiigAooooAKKKAOaAHjPritTw/E0ut2+0fdJY+wA qumlX7hStpOVPIIibB/HFbumW7aFY3N/dqI5mTbEjdSfp9cfkals5sRViqbindvRL1MrxBcC41md gchTt/IYP65rJp7MXYsxJJ5Oe9R0zeEVCCiugUUUUygooooAKKKKAOo8GR5u7mTH3UC5+p/+tT/G M5M9tb/3VL/mcf0NVfCt4LbUWgc4WYbf+BDp/X86ueMocfZZx3DKf0I/rU9TyZK2YJy6rT7jk8n1 oyfU0lFUesLk+poyfU0lFAC5PqacHZWDKxBHII7UyigLFkXlypBE8gI5BDmp11fUAwP2y4yP+mrH +tUKKViXCL6Hs3wo8ay3Fy2galOXZwXtHb1HLJ/Mj6H2rK+L3hU2GpLr1quLe7bbOB/DLjr9GA/M H1rza1up7K6iuraRop4mDxupwVYdCK+j9Iv7H4heBilwAfPj8q6jHWOUdx+IDD8K+bx0Hl2Ljjaa 9yWkl/X9X9Tvo2q0/ZPdbHzRRyDWnrWk3Gh6vdabdACWBypI6MOoYexGCPrWZX0kZKUVKLumcbTT sy/ZardWJHlSErnJQ8qfwrrIJ7XXdPZSuOzIeSjdiDXCjpW74ZuDFqHk84lUjHuORWNamrcy3R7O VY2aqKhUd4S0s/PsZFxC9tcPC33kYg1Ae1dL4otVWaK5XguNrfUdD+X8q5o9K0pz54pnBjsM8PXl T7fl0EoooqzkCiiigAooooAKKKKACiiigDovCs228miJ4ePP1IP/ANc10OpwfadNuIsZJTK/Uciu Q0OXytXt2zwW2H8eP613VcGI92opI+yyVqtgZUZd2vkzzMnHFHWrmowC3v54hnarED6dv0ql3ruT urnyFSDhNwe60EooopkBRRRQAUUUUAFfbvgX/knvhr/sFWv/AKKWviKvt3wL/wAk98Nf9gq1/wDR S0AfGWu/8jDqf/X3L/6Gaz60Nd/5GHU/+vuX/wBDNZ9ABRRU8MElxOkMSF5JGCoq9WJOABQ9NwPT /gz4e+1alc65OhMdr+6gJHBkYfMfwXH/AH0KZ8Y/EgvdWh0O3kzDZfPNg8NKR0/4Cp/NmHavR4ks /h74B+bawsodzHp50zf4sePQY9K+b727mv72e8uHLzTuZJG9WJya+bwC+vY6eMl8MdI/1+PzO2r+ 6pKmt3uVaKKK+kOIKKKKACiiigAooooAKKKKACiiigB2OK6Dw5ZKzT6hNHvjt0LKvqwGf0H8xXP8 8V6Do9qlroMavwJEMkh+o/wxUs4sfW9nTsuun+Zyl14g1G5kJ89ogTwsR2gflzWdLcTTtumleQ+r sTUR6mjjvmmdUKcY6RSQ2iiimWFFFFABRRRQAUUUUAOUlWyDzXUXtxJrHhdZ2w01vLh+eSMYzj8R +Rrl8cV0HhiZWuZrGXmO5jIx7j/62aTObFRtFVEtY6/Lr+BztFT3EDQXEkTfejYqfqDioelM6E7q 6EooooGFFFFABRRRQAteg/CjxEdH8TpYysfs2oEQkekn8B/M7f8AgXtXn1SRyNG6ujFWU5BBwQax xNCOIpSpT2aLpzcJKSPZPjR4eDwWuvwIdyHyLggfw9UY/jkfiPSvF8V9L6FqFr4+8CYusM1xEbe6 UD7koHJHp2YfUV86ajZS6bqNzYzjEtvK0T/VSQa8jI68/ZywtX4qbt8joxUFdVI7Mp9q2/DEZfVg 2AQiMee3b+tYgrqvCkGIp7gjqQgP6n+Yr2KztBm+U0nUxcF2d/u1LHij/kFL/wBdR/I1xtdZ4rb9 xbJk5LN+gH+NcmKnDr92jbPZXxsl2S/ISiiitzxwooooAKKKKACiiigAooooAlicxyo69QwI/CvR 0YOiuOjDIrzX0rv9Jl87SrZ+PuBePbj+lcmLWiZ9Nw5UtOdPuk/uOc8TReXqgkB4kQEn3HH9BWFX VeLIyYbeUDgMQT9cEf1rla2ou9NHl5tT9njJpdXf79RKKKK1PNCiiigAooooAK+3fAv/ACT3w1/2 CrX/ANFLXxFX274F/wCSe+Gv+wVa/wDopaAPjLXf+Rh1P/r7l/8AQzWfWhrv/Iw6n/19y/8AoZrP oAUV3vwp0M6t4vjuZEBt9PXz2z/f6IPrnn/gNcHivoL4R6RHpng37e6hZr92lZiMERqSqg+3DH/g VeVnWJ+r4STW8tF8/wDgXOjDQ56i8tTB+NWuYSw0KKQ5ObmcDpjkIP8A0I4+ledaZ4cfUNPNz5wT dny1xndj19Oai8V6y2v+KL/Us5SWXEeeyD5V/QCptE8QDTYDbzRs8WcgqeV9eK2y/C/VsLCl13fq 9zkzCpVmnKjvf8DEkhkhkaORWV1OCD2NQ8g812P/AAkOnXN2pGnqzswAkkC59OuDWN4jgSHW5VRF VGCsFXjGQM/rmu1MxpV5ykozjZ2uY1FFFUdIUUUUAFFFFABRRRQAUUUUASxo0kiooyScAV6Pqr/Z 9IuSny7Yyq84xkYrzq3bZcxMegcE/nXXeK9R8q1FinLygFz6KDx+ZH6e9S9zzcbTlUr04rz/AEuc Uepoooqj0gooooAKKKKACiiigBaKO1aOl6ZLqtyYY2VAo3MzdAM//XpClOMIuUnZIzs1r+HY3fWr cpkbckkemDWyvgyMA77tm9MR4/qa2NP0i00qMtECWI+aVzzj+g4pOSPNxGY0XTlGDu3ocXr8Rh1u 6GAMtu49wD/Wss1r+IL6K+1RpIR+7VQgbGN2O9ZApo7qHN7KPMtbISiiimahRRRQAtHvRVuys5L6 7jt4sbnOBuOAOMmkDaim3sT2ui6jeQia3t98Z6MWUZ7dzWjp+gS28xuNTiVLaJSxBcHd6Dg0/Vbk aVaW+nWV0wlQlpWRyOfTj8eKwJLieYfvZXfJz8zE80tWckXWrJtNKL8ne33nsXwp8RWD6nd6RBbm 3MyecgLcMy8ED3wc/wDAa534w6J/Z/iiPUEAEWoR7uBjDphW/TafxNcf4c1ZtD8RWGpqTiCZS4Bw SnRh+Kkivb/ixpqap4Ge8iIdrN0nRlOdyn5Tz6YbP/Aa+err6nmkKq+Gpo/X+rHrUYqWGcF9k+eu 1d7o0Ag0qBe7rvP481wI616LYjbY24IxiJAfyFezin7qR7HDkE60pdl+Zg+LXBNqncbm/PH+FcxX R+K8G6hGeQhz+dc52rWh/DR5+cO+Nm/T8kJRRRWp5gUUUUAFFFFABRRRQAUUUUAL1rsfDFyJLBrc n5o2zj/ZP/181x3WtbQbo22qICcLJ8jfj0/XFZVoc0GellWJ9hioyez0fzOp1a0F5psseMsBvX6j /OK4E9a9Mrg9YtBZ6lKgGFJ3L9Dz/wDWrDCz3ievxFhvhrr0f6GbRRRXYfLBRRRQAUUUUAFfbvgX /knvhr/sFWv/AKKWviKvt3wL/wAk98Nf9gq1/wDRS0AfGWu/8jDqf/X3L/6Gaz60Nd/5GHU/+vuX /wBDNZ9AEigswVQSScDHevpPWyvhj4Y3EQGw29gLcEdnZQgPA67jnpXhfgbTxqfjXSbUruXzxIw9 VT5z+imvVfjTqAg8M2liCN1zc7jzyVQEnj6sv+TXz2bfvsZQw/nd+n9JnZh/dpTmeDnrRRRX0Jxl 3TYjNqVtHz80ig49M1c8SOX1qfIIxgYPpgVY8KW6z6rvYj90hcD1PT+v8q2dX8ONqN79ojmVNwAc EZ5Hf8qm+p59XFU6eJSm7WX5nDUGuvXwZGM7rxvbEWP61z+p6e2nXrW5cNgAhgMZB9qdzopYqlWl ywd2Z9FFFM6AooooAKKKMGgAp6ruYDIGTjJ6CmVLFE8sqRqpZmIVQO5PSgTOjnGmaE0arAbu6Cht 7NhQexx/n61h3t5Lf3TTzHLuenYDsB7Vr+JvLiaytuDPDCEdx34GP6n8a54dR1qUc+GinFVHq31Y 2iiiqOkKKKKACiiigAooooAX1rp/BxH2u4GRkoDj8a5jtXR+D/8AkKTf9cT/AOhLSexy41Xw8jW1 zX5tNu0ghjjYlAxLZOMk8YB9hXO32v3t/GY3fZGeqoNoPsak8TuH1uUDooUdevAP9axcflSSIwmG pRpRly62uNoooqjtCiiigAooooAWui8Ix79Ukcg/JESD75H/ANeudro/CEmzUpYyR88Rx9QR/wDX pPY5sZf2ErdjH1BDHqFyh5KyMM/jVStLXI/K1q7XB5ctz78/1rNoRtSfNTi/JCg19J+EJ18T/Da3 gmcky2r2cpOSeAUyefTB696+a69q+CGpM9hqmmM3EUiTxgn+8CG/9BX868TiCk5YX2sd4NP9Dtwk rT5X1PHprWW3vZLWRSJY3MbL6EHBH516FGgjjVAchVAzUHi3Rlt/ilfBF/dMVuzk92AJ/wDHyas1 1SrKtThNdUn959Nw/QdONSb6u33f8Ocf4ocNqSgfwxgH8yf61hVf1W5N3qU0oOV3YX6DgVQzXfTV oJHzWOqKpiJzWzbEoooqzkCiiigAooooAKKKKACiiigApykhsim0UAei6fc/a7CGb+Jl+b69D+tY niq3JjguQOQSjH9R/Wk8K3RKzWrN0+dB+h/pWtrEIn0m4Urkhcj2xzXAl7Osfbyksdljb3t+K/zs cBRQetFd58QFFFFABRRRQAV9u+Bf+Se+Gv8AsFWv/opa+Iq+3fAv/JPfDX/YKtf/AEUtAHxlrv8A yMOp/wDX3L/6Gaz60Nd/5GHU/wDr7l/9DNZ9AHoXwetPtHjlZcKfs1tJLz74Tj/vv+da/wAcLvfq 2k2e4fuoHl246b2xnP8AwD9Kk+B1sGvNZusjMccUeMf3ix6/8Arnvi1dGfx7dRHdi3hijGTnqofj 0+9/Ovnl+9zt/wByP9fmdnw4b1f9fkcHRRRX0JxlyyvZrC4WaF9rAY+o9DXQReM5QuJLRS3qrlR+ WDXJ0tKxjVw1Kq7zjc77Q9bfVpZ1kjVNoUqFz75/pXMeIZhLrdyVOQpCdc9AAf1zVvwlOqalJEzA eZH8ue5BHH5ZrO1OwvLSZ3uYmXexO7GVJPoaSWpx0KMKWKlbTRWX9ehm0UUVR6Q6ko681q6Ppb6n dBcFYl5d8dB6fU0iZzjTi5SeiDStEuNUbcoEcKnDSN0+gHc12Mek6bp9kweGNo1G55JFDE47/wD6 qlubq00eyUthEQbVjXqT6CuK1TW7nU22sdkAPyxqePxPc1OrPHUsRjZXXuwX9feXv7W0SN8rpQOD xnH8qc3ie3hDfYtNiicj7+AP0A/rXM4ozVWPR+qU+t36tk9zcSXUzyysXdzlmqDvRRTOhJJWQlFF FAwooooAKKKKACiiigBwrq/DsK6dZ3GpXIKJswmf4hnP6kDFUfDljHcXUlxOu6G3XcQRkE84z+RP 4VU1PVrjU5iZG2xg/LGv3V/+v71L10OStetJ0Y7aXf6Ip3Vw11cyTP8AedixqCiiqOpJJWQlFFFA wooooAKKKKAHA84rX8OSiLW7cnoxK/mDj9cVj1saVpjyOl3cN5FqjAmRjtz7L71LMq/L7OSk91Ym 8VxeXq+/j94it/Mf0rBFaetXq3+pyTR52DCrn0ArM6U1sLDxlGlGMt7C16J8Hb77N40NuxOLu1eM Ddgbhh8478K35mvOxXQeCr5tO8aaTcjOBcKjYP8AC/yn9GNc+Npe2w06fdM66OlSPqel+Nbi3u/F EskOMxRLA7D+IqWJ/Ldj8K4/WbtbTTZTn55BtUe5/wDrVqTStNNJM5G52Lt9TzXBa1fm/vWKk+Un yoPb1/GuLBYfljGHSKR9pmGIjgcJ7OPxPRfqzNzknNHfFW7Cxe/uhDGQpwSWPQAUX1lJY3bQuckc hh3HrXq8yvy9T4z2FT2ftbe7e1/MpUUUUzEKKKKACiiigAooooAKKKKACiiigC/pd0bPUIZs/KDh voeDXc3ahrKdTxmNhn8DXnIrvNFuvtmlxFjl0+Rs+3T9MVy4mO0kfSZDX5lPDy66r9Tgm+8frSVJ IpWRgeCDg0yuo+ckrMSiiigQUUUUAFfbvgX/AJJ74a/7BVr/AOilr4ir7d8C/wDJPfDX/YKtf/RS 0AfGWu/8jDqf/X3L/wChms+tDXf+Rh1P/r7l/wDQzWfQB7P8DYnEGtzEfu2aBQc9wHJ/9CFcT8T5 El+ImqshDAGJePURICPzBrvfgh/yB9V/6+E/9Brzf4g/8j5rP/Xwf5CvnsJrnFd/3V+h21NMPH1/ zOZooor6E4gooooAeCQcg81v6Jqkk1wtjeSGa2m+QrIc4PbB69cVz/rxT43aORGQ4YEEH0NJmdWm qkWv6Rcu9OlttSayVSzb8R/7QPQ1sDQbCxQNqt8FcjOxOv8AIk/lXTWgF1Bb3ksKicxj5sDIyO1c 54m0eQGXUlm3qSNyt1XoBj9Km9zzIYyVWaouXL3t1f6Fc3vh+AfurCSU9zI3X9f6VetvFWnQQkJZ NCx52Rqu0n68fyrjqOKqx2zwdOatNt/NmlqupyapdGV/lQcIo6KP8azR6UUGg6YQjCKjFaISiiim MKKKKACiiigAooooAKKKKACiiigDsvBoH2W5OBncBn8K5vUrNrG/mhPRW+U+o6j9K6Xwb/x6XP8A vj+VVPGUO26tpcffQr+R/wDr1PU8qjVccdOHf9EcvRRRVHqhRRRQAUUUUAL3paSrtlp1xfMREo2r 9524VfqaQpSUVeTsimoORXSeLTtvoI14jWEYA6Dkjj8hUEWgQ7h5ur2SnvtkBx+op3iaWCa6gMU6 zMsQVmTkHk/rS6nK5xnXjy62v0fkc9RRRVHWLWt4baJPE+lNOdsIvIjIfRd4z+lZNXdJ/wCQzY/9 fEf/AKEKmfwP0Kg7STO31IvFYXOFIdUYY6Ecf0rzxuD+Ne0eMtKNnrVwPLxBdZdCO+fvD888fSvH rmB4LmSEj5lYqeK4cvqxq01KPU+hz5OoqVVbNG1omLXTb2+IwQNiH0/ySKta3Et/o8V8g+dQCcDq D1H4H+tQ6kv2Dw7bWpB8yQ5YHr6n9SK1NKhMmgQwy9GjYH8ScfpitJSs/aef4HRhqTnF4J/y3fk2 7/qcJRT3UrIynjBwabXYfKtWdhKKKKBBRRRQAUUUUAFFFFABRRRQA6t/w1d+Tetbs2FlHGf7w/ya wO31qaCZ4J0lU4ZGDD6ipnHmi0dODruhWjUXR/h1LGqwfZ9TuEAwN5IHseR+hqjmui8SxpIlreIP 9auCfyI/ma5w0qcuaKLx9L2WIlFbXuvR6oSiiirOMKKKKACvt3wL/wAk98Nf9gq1/wDRS18RV9u+ Bf8Aknvhr/sFWv8A6KWgD4y13/kYdT/6+5f/AEM1n1oa7/yMOp/9fcv/AKGaz6APbfgfIh0vV49w 3rNGxHoCpx/I1558RInh8fausgwTMGHPYqCP0IruPgV93Xv+3f8A9qVx/wAU/wDko+q/9sf/AESl fPYTTOa0f7q/T/M7KmuGi/P/ADONooor6E4wooooAcBk471u6d4du55Y5LmIxW5ILFmwSvfjrVHS GSPVrVpPuiVc57c9ateIpZv7YnjeRiqkbRk4AwCOPxqTCpKbn7OLtdXua+q+J/IkNvYbWKnDSHkf Qf41laj4iudQtjbuiRocFtmfmx9fesTjPNJ36U7IilgqNO1o6rqJRRRTOoKKKKACiiigAooooAKK KKACiiigAooooAKKKKAOv8Fv8t4hPAKED88/0qTximbS2k29HI3fUf8A1qpeDmAvrhecmLP5Ef41 q+LF3aN1xtkVv0I/rUdTw6nu5gn3t+VjhKKKKs9wKKKKACiiigBR6V2+k2EMXhtxfIFjlPmN8xB2 8Yzj6ZxXI2bxR3kLzIXiDguvqM11Piu5lNlb+U/+jzcnH8XQj8KlnDjOac4Uo6Xd7+hx7Ebjtzjt k0yiiqO4KKKKAFrR0SJ5te0+ONSzvcxqoHclhxWd2ra8I/8AI56J/wBf8H/oxairpTl6MqPxI90+ JtzBY+GY7qZELLcoqk/e5znH4DOPb2ry/wAzTJH+2F7YsAPnJGR6fj+td78auPBlp/1/p/6Lkrwb JxjtXg5DR5sGpX6s9xZpPDN03FSW6v0Zq6xfjU75fLH7tflQdPxrsokEMMceRtjQLn2ArmPDumGa UXcq/u0PyA/xEd/wrZ1nUIrKzdCczSqVRR27ZNenVs2qceh6WXOVOlUxtd25vyX+fQ4mdg8zsM4L EioqCckmkruPkZO7uFFFFBIUUUUAFFFFABRRRQAUUUUAFFFFAHTXp8/wpay/xIQM+wyv+Fc2Rg10 FoRP4Uuo+C0bZHHQZB/xrnyaypaXXmejmD5vZz7xX3rQbRRRWp5wUUUUAFfbvgX/AJJ74a/7BVr/ AOilr4ir7d8C/wDJPfDX/YKtf/RS0AfGWu/8jDqf/X3L/wChms+tDXf+Rh1P/r7l/wDQzWfQB6l8 E7ny/EeoWvaW0353d1deMd/vH8qq/Ga18nxlFN8xWe0RskcZDMCAfoB+dZvwsuha+P8ATwxULMsk RLe6EjHvkAV13xxtAU0a8VR/y1ids/7pXj/vqvnqn7rOov8Anj/n/kdi97DPyZ43RRRX0JxhRRSg EnA60AOUncCK6DxJG0gsbwj/AF0Azj1AB/8AZhUUXh+SJElv7iK1jbBIZvnx7D1rQm8Ux2rJBZQr JBGgRWYkE4FScdSq5Ti6S5rXv2+85pbO4kICwSEnphTzVhNE1Jz8tlKP95cfzraj8YyA/vLNSP8A ZkI/oad/wmg/6B//AJG/+xp6kSrYv7NNfeZyeFtUbOYUT/ekH9KmTwjqLDJe3X2Ln+grQHjKAgbr Rwe+HBqZfGFkV+aGcH2Cn+tK7Od1sf8AyL+vmYr+FNSUnCxNj0fr+dQ/8Izq3/PqP+/i/wCNdA/j CyC/JBOx/wBoKP6mov8AhMrf/n1k/wC+hRdjVbH/AMi/r5nPnQtTB/48pP0pP7C1P/nzl/KtxvGa 7jixJHvLj+lRP4ymJPl2ka+m5i2P5Uamqq41/YX3mHLpt5B/rLWZfrGcGq4jdiAFJJ6ACt1vFmoF wwWFQP4Qpwf1zS/8Jhff88Lb8m/+Kp6nQp4hLWK+/wD4BiiyuWIAgkJPAAU1KNI1AnH2K4/79t/h Wr/wmN7/AM8Lf8m/+KqQeMrjjdaxE+oJFGpDqYnpBfeZf9hanj/j0k/Ki60W/sofNuICkecbtyn+ RrVPjKbtax/ma35iNS0B3cLmWHfgdA2Mj8jU3ZzzxWIpOLqxSTf9dTziilIOTxSYPpVnqBRRg+lL g+lAGnol39j1aCTPysdj/Q8f/XrpfF0wTS0i4y7j8gD/APWriQCCDXReKpGcWIZif3O78TjNS9zg r0VLE05+v4HNUUUVR3hRRRQAtFFWLS0mvbhIYULyN0FAm0ldi2drJeXSQQrudzgf412eraLcXlla WkLoBCuGd8jOAAOmfelt7ez8Nac08pVpiPmbux/ur7f/AK6y5vGNwzHyrWNfTexb/Co1ex5VSrXx FRSoL3Y9X3Mu48P6nb4JtmcHvH838qp/Y7gdYJf++DWmfFepE/eiH/AKP+Er1P8AvR/98VWp1xli kvein82ZP2S4/wCeEv8A3yaPslx/zwl/75Na/wDwlepf3o/++KcvivUUbJ8ph6FeP0NGpXPiP5V9 /wDwDNGlah/z5XH/AH6b/Cuv+Hmg3beO9La5tpEiiZpSxHAKqSP/AB7FVrfxhblQLm3dD6phh+Rx Xo3w0vLbVL+9ubdi3kRKjArjaWPH/oB6V5+aVnSwdSXlb79P1Fhq2JliIwlCyuZ3xuvgtnpNgHOX kkmZd3TACjI/4E35H1rzTR9Ea9/fT5SAHj1b/wCt711XxjvhceM4rdWytrbIjLnOGJLH6cFaZYMj 2EDR427F/DjpXNlydDL6aW71+93PqsuwtPFYuTqaqPTuUtV1NNKt1hgRfMI+QY4VfWuQuLia6mMs 0jO57mui8U2pYRXS5IA2N7dx/X9K5avToRjyXW5jnVat9YdKWkVsug2iiitzxQooooAKKKKACiii gAooooAKKKKACiiigDovDpMsF9bDOZI+Bn2I/qKwHyGIPrWloFx5GrQjOFkOw++en64pdetPsupy YGFk+cfj1/XNZrSbXc9Gova4OE19ltP56r9TJooorQ84KKKKACvt3wL/AMk98Nf9gq1/9FLXxFX2 74F/5J74a/7BVr/6KWgD4y13/kYdT/6+5f8A0M1n1oa7/wAjDqf/AF9y/wDoZrPoA1NEv20rXLG/ UkG3nSU9eQGBI47Yr3b4r2P2/wABTzId32aWO4XbzkZ2n9HJ/CvnfFfSehEeKPhdbxPh2ubBrdie 7qCmeR1yM59a+ezz9zWoYr+WVn/X3nZhfejOHdHzVRUkiNE7I6lWU4KsMEGo6+hOMXpU1vMYZ45A AxRgwB6HBzzUFFANXVmdH4hge5EWqwsz28yD/gBHGPz/AFzXP1u+G7/y7kWM4D28/wAhRumT0/Pp UWu6OdMuN0QJtpD8hJ+6fQ1K7HJSqezn7Cfy81/mjEoooqjrCiiigAooooAKKKKACiiigAooooAW um0jX4bDS3gnVpHVjsTsQeoJ7c5rmKUUNXM6tKFWPLPY6P8A4SLT/wDoB2/5r/8AE0f8JFp//QDt /wA1/wDia5yilZGX1Sl5/e/8zoz4ltlGYdIgQ9zxyPwUUn/CTj/oG235VztFFkH1Sl2/F/5nTQ+J BJMif2fajcwGdvqareKZnl1hoTjbEqhQB6gH+tZVmM3kIH99f51qeKVC605A5ZFJ/LH9KVtTONKn TxEeVdH+hhUUUVR2hRRT1UuwVRkk4AoAfHG8sgSNGZ2OAqjJP4V12jWo0O0mvNQxG7gBVyC2OuB7 k4/Ko5VTwvYRlI45LybI8w9AB1x3x0rmbu9uLyUy3ErSN6sen0Hap3OKXNiotR0h36v08izquqS6 pdGST5UXhEHYf41m0UUzrhCMIqMVZISiiimUFFFFADs1758G9N+y+EJbxlw17OzA+qL8o/UPXgig u4VQSTwAO9fS9248IfDRhkpLZWAjBB/5bEBQeD/fPY/SvA4gm3Rhh47zkvw/4Njrwi95zfRHgXi7 Vf7a8Wanfq25JZmEZznKL8q/+OgVe8L3gMb2jHkfOv07j/PvXLdantbh7S5SeM4dTkV7LopUlTWy Vl8i8Di3h8Sqv3+j3O/u7dbu0kgbgOuM+h7H868+miaGV4nGGUkEe4r0G0uUvLZJ4/usOh7H0rn/ ABLp21hex/dbAceh7H/P9a58PPllyM+hzzDKvRjiaetvy/4BzFKBzU1rA91cxwJjdIwUZrT1PQpL CMSq/mx9GIXBH1Fdjmk7NnzFPC1alOVSEbqO5iUUUVRzhRRRQAUUUUAFFFFABRRRQAUUUUASIxR1 YcYOa7HV7VdT0lLmPiRF8xcdwRyP8+lcXXZ+G7nztO8on5omx+B5H9fyrCvdWmuh7eTclWU8NPaS /FHGYoxWtrlgLK9OwYjf5l9vUVlelbRkpK6PJr0ZUajpy3Q2iiimZBX274F/5J74a/7BVr/6KWvi Kvt3wL/yT3w1/wBgq1/9FLQB8Za7/wAjDqf/AF9y/wDoZrPrQ13/AJGHU/8Ar7l/9DNZ9AC5r2n4 K635tlfaHIRuiP2mL1KnCsPoDt/76NeLdq3/AAhrZ8O+KLHUSxEaSbZsDOY24bjvwcj3ArhzPC/W sLOmt916o1oT5KikbPxR0IaN4xuJIlxb3w+0Jx0J+8P++sn8RXEV9CfFbQjrPhH7bCokmsD54K85 jI+fH4Yb/gNfPfOaxybFfWcJFveOj+ReJhyVH2Y2iiivUOcljcxyK6kgqcgjsa9IQQ6vpS+YoKTR gkDsfb6GvM66/wAKap8psJDgjLRnPXuR/X86mSPOzGlKUFUhvE5/U9Pl027aCQZHVWHRh61RP867 3xRai40hpSPnhYMOOx4P88/hXA9KE7m+DxDr0lJ7rRiUUV7R8QvCuh6X8FfCur2WmQQX919k8+4Q HdJutnZs/VgDVHUeL0V6nN8BfGUWofZVOmyL5fmCdZ2EZb5vkG5QS3y+mORk1ofDT4Qx65quoHxK 4SPTbpraWwim2yPIuCd2B/qyG4ZTk849aAPHKK7uw+Fev6n4ov8AQ7GfT7j7AsbXF8k5+zIHXcvz Yye44HVT6VV8S/DnXvC2mRanex28+nySGMXFrMJUB7ZI6A4P5Y60AcdRXqGl/ArxbqmiWWqQyabH HdokiRSzsJFRuQzAIR0IOASfbPFUrD4Qa/qHi/VfDcV5pq3umRxyTO8snlsHVWG07MnhhnIFAHnl FehXHwf8VQ6/ZaIi2c99cW/2h1imJW2TIB80kAA5PbOe2aZ4j+EniHw5osurNPp+oWcD7J3sJmkM PTlgVHqOmcd8UAcBRXuXij4L6fofw1TULbULZ9WiAurq5muCInRYnZo4AFw2Tt25GTjqM4rN8a+B nuJ/BmmWOjaRpNzqiSKs0F3JIJiFjOZMxLtxntu+8fTkA8for09/gV41S4vIY4LKY2wG1kn2ifKg /JuAPcjLADKnnisnwh8LPEfjWwub7TltYLaCQxb7qQpvcAEqoCk8ZHJAHPXg4AOGors/Fvw31vwX pNhqOrSWgF6dqQxyMZI227iH+UDI6cE81f8AhR4Bj8deI5EvXkGm2SLLceX1kJOFjz/DnDc+inHq ADitJ/5C1n/12T/0IVp+LEK6uCf4owR+o/pXsmjN4AvdXurHTPh5qc+m20rQR6tbQS3AMoPOSCSo 5BBJJwRkCrvgPwhoet+IfEMGsaR9pFolusCXsZWRAzTdRngkBc/Sl1OWaaxEX5M+bqK9o+EvgXw/ 4j8K6jqs1j/a+s2s2xLGe4MMK8KUJK8nPzdeOCMcZNH4qaL4d0nSrBofDF9oWuStmZVBe0cAYZVc tgkHBG0eu4cg0zqPJTUsUhSVHAztIP5V2Hwp0qy1r4l6Rp+pWsdzaTed5kUnRsQuwz+IBrrvEPwo u9f+KGv6X4bgs9PsrNIHRZy6RkNEmQpCtk7iSaBO2zOB8XSF723w2U8kMv4k8/oK5vtXpXi74c+J tM8K2mt3tpCtvbQolwqSgyRZIA3D6kA4zg57V0Xi/wCD2n+HPhfFqcF7DNqqNHNcXEk58t02Nujg AGGyxUjIyQpOR0pIyw8eSko9jxKiu60D4TeMPEdgl/aaasdpKoaKWeVUEgPQgZzj3xiuX1nRtQ0L VZ9O1O1e1u4Th43A49CCOCD2I4NM2M2ivZ/hl4E0AeEL/wAc+KY2vLK2SQxWijghAdxIONzE8KMg Dv7a8/hjwJ8RfA2r6t4S0m40y+0xXKo4EfmELvAIDMpBGQDkEHrx1APAaK7K7+HWr2fhTR/EElzZ Gz1a4jggRXfzFZwxBYbcAfIc4J7VpS/CDX4fGtv4Ua70w309mbxZBJJ5QQMy4J2ZzlT29OaAMr4b 6J/bnjSzRwDDbH7TKCMgqhGBj3YqPxr0P4060INIstIjf95cyedKB/cXoD9WP/jtdD4B+Hl/4HtL 2TVntGvLmXYogctiNM4OSB97OfptzzwM7RvDWk+OfEuv+LfEEryaJosjW8UGcJIIl3MWOfujO7Ax ndz3B+daeLzbX4aa/F/1+B2Jqnh9N5Hz7RXrWsah8JPEGlaq1nY3Og6jCn+hOFdhcHnA2KWVemDn H3s5PblvDPw08VeLbRbvS9PBs2JAuJZVjQkEjAycnkHoK+iOMytD1T7DMYpifIk6/wCyfX/GuudI 54WRgGR1wfcGsuw+F/iW68XDwzPBFYag0TTIbpyI3Re6sgbP4V2Vn8KfG+naUJpIrS7VWC/ZIZ/3 6DPXkBcYwcbs4I6dK5q1FyfNHc+hynNY0o/V8R8PR9vJ+RwNtocllrMLAl4NxIYdRgEgGuhkZAAr kbZDsAYcEntXT6z4H1bRPshujA8V1IsUcsUhZQx6A8A+v5Gp9V+DviW+tJ7eKWxEqAPHmZgJCOSB 8ufbJwMkc1i4zqSSkj1oV8HgqMpUpJp3aV99lY8q1rQvKD3VsP3XVk/u+49q52vaLf4e+KbPww+o 6pBCrQhvNh8zdKijuwHHTngnjmuT134banpuk6frv2iy+xapdJb28as/mIzhiNw24AG09Ce1dNKU k+SfQ+fzGlh5RjicO9Jbrs9zgaK9El+EGvw+Nbfwo13phvp7M3iyCSTyggZlwTsznKnt6c0zUfg7 4t0zw/eaxcWtv5VoGaaJZsyKi9X246Y+brnHatjyDz6ivXb3wX9u+G3hVodL0XT59Ru44hqj3j73 ykp/eL5QCg7eoZug9eLfxA+FFh4TXRZ9NngnjEscVxHdzkTXLs4wQoXATHHHQepoA8Xor1fx94Ev 7r4i6doGjaBYWFzcWKyi3sbppYsB5MyM7om3hemOwxknFZOufCHxNomn318RY31tYjNw1jceYUA+ 8SpAbjnPHGCelAHn1Feg6X8J9bv9DstUu9T0TSYb8j7ImpXZieYEAqVAU5zngZz7dK4/WNKn0TVb jTboxNNA21nicOjcZBVh1BBBoAzqKKKAFPStrw7ci31IIxwso2n69v1rGqSN2jkV1OCpzmplHmi0 b4as6NaNRdGdvrNiL+xYKMyx/NH7nuPx/wAK4QnrXotncC6s451x865IHY9x+dcfrtl9k1F9oIST 5l/HqPzrmw8mm4M+gz3DRnGOLp7Pf9GZFFFFdZ8wFfbvgX/knvhr/sFWv/opa+Iq+3fAv/JPfDX/ AGCrX/0UtAHxlrv/ACMOp/8AX3L/AOhms+tDXf8AkYdT/wCvuX/0M1n0AFFFFAH0N8LfEI1/wmbK 6xJPY4gkDDO+Mg7CfwBX/gPvXjfjLQW8N+J7zT1VhAG3wFu8bcr9cdM+oNXfh94l/wCEa8U280r7 bO4/c3GegUnhv+AnB+mfWvT/AIt+GG1XQl1a2j3XVgCZMdWh6t/3z1+m6vm4/wDCfmbi9KdX8/6/ M7X++o36xPAaKKK+kOIWpYJngmSSM7XVgQfQioqOhoBq+jPRdYcS6BPION0efzxXnVelafJDqOjR /dZWi2OvocYIrgtSsZdPvHgkB45U/wB4djUxPJyySi50numUa9o+IXirQ9U+CvhXSLLU4J7+1+ye fboTuj22zq2foxArxeiqPWPpHX/H3h25+MHhLUYNdgfTLSC6WeUOdkbPGwGfqdv5D0rF8J+PdC0r 41eJb24vohpepBhHeD7gZcMM+xAYfXHrXhFFAHuPw78S+G/BWoeJPC0uvQXFldIj2mqfZ8Qu/lHe HUlsYJAAwQdrZ6gVneMvEkNt4Dm0S08UaLeRXcq50/SNJEMagMr7i+4BeVH8JJ/Mjx+igD6jW98O 634l8EXt4ur6ZrduhjgsZdPlh875QD8zDZsXk/KTw1VbTxJo/hv47+MptZ1CGzjmtrVY2lJAYiKM 4FeQ2Xxf8dafYW9la66Ugt4liiU2sDbVUAAZKEngdSa5DUNQu9V1Ce+vZmnuZ3LyyN1Zj/npQB2v wzk8LXfjK7uvGr27W5geZDcAhGnMi9QvB4LfKQR19BXpWqeLfDI+GviTQ4de0E3UiyNb2+nWbW0I UhSEUYIZjg856nB6V86UUAe3634i8OeL/gfpOlPrlvYappUaP9llQlpmhiaMKMdNwIIPPpj00vEH jTw3deJvhrcQavbPDp3mfbHBOIcpEBu/FT+VfP1FAH0Jo/jnQIvj34i1efW4F0ibTkhgnZz5bMBB 8o/ESfrVPRNa0TV/hV4j0fXJdQsNNOpPImpQWEssTKZVcAuqld27jDEfeXHt4PXT+G/HvibwlaTW 2haobSGZ/MkTyI5AWxjPzqccDtQB618efLHgTwr5JcxbhsLgBivlDGcd68++FPjqLwL4oee8WQ6b eIIbjZyU5BWTHU4549GPU4rA8SeMNe8XzW8uu6g141upWMFERUBOThUAGTgZOM8D0rnqAPo3w1qn g7w34hk1DSPHk0mlXVxLcJokdq5zI6nrxnAwMZAxtGTVrwn478P2HjnxdfanqMdjFefZmtxccFgv mZ6Z/vD868C8MqTr1uQMgBif++TTvFDhtclUZ+RVB/LP9aXU5XUbxKp9Er/idx8O/wDhB7nw9eR6 vqDaF4ijkza6pHPKrBTgggKwXIIII44I/DZ+JvjbR7/4d2PhqLXx4i1WK5WSa++zGMBQGIPpuwwX gngNk56+JgE9KSmdR6Z8G0tbHxpZ6zfTJFb25lQOxICkxMMn/voD8a9N0b4j+Go/ih4juLjVbWLT pYIBBdFjtlYIu4Djscj8K8c0UfY/C08zfxiRxzjttH8q4s9c0kclGTq1J82qi9PuPc7Px1o938Ed Z0+81KCLVZ/O2WzMS7ZYEc9yeeah1vxF4d8X/BDSdKfXLew1TS40f7LKhLTNDE0YUY6bgQQefTHp 4jRTOqMVFKK2R9Dz+JvBXi1vB2rz+Kk0mbw+VllsZLdyXYeWSob0/d4yN2QexrzH4r+JNO8VePLn UtKlMtn5UcSSlCu/C8nBAI5JHI7VwtFAz2f4aeMfD0/gHVPA3ii7FlBOJGt7l+UAbHHsyt8wzwfw 51Brvg34dfDzW9N8O+IG1jUNT3IpQYMZZNu49gF5PqSQK8EooA940fxV4K1n4XaBpeua0dPudGuY bh4hC7s5R2AAwOdyE9M7ScnpzvjxToer/tAaVfadqUNzbf2O1v5keSPM3yNt6ehzXzTXtfwc8MNb 203iG6jw0wMNsD/cz8zfiQAPoexrizDFxwmHlVe/Rd2a0abqTUTs/iX4o/sDQL26hl/0u5doLYjq Cc/N+C5P1x615v8ACHx9pHhuHVtD8RsyaVqK7vNCM6o20qysqgthhgZHTHvkZHxW8Sf214nayhfN pYZiXB4aT+M/mAP+A1wOK58nwrpUOea96b5n89kXiJ80uVbLQ9k1G2+FPhnwbq8Vjerr+o3oJsvN Q+ZAcEL8ygbcbtx6bsAY44s22teEvGXwr0Hw3f8AiVdBvNMmV5fMgZ920OoKnIHO/Oc8c8dK8Qor 1TnPo6f4meF9Q+MWm6jDqIXTbKwlge7lUqjOxzhQRn2zj9OaytG8baLb6X8TvN1qNLnULi8bTyXO 6UFHEZQ/98gfhXg1FAHtWp+LdGPwo8Fadb6rF9ustQt5LmFGIaNAJNxPtyPzrp73x/4ek+Nemagu uwNpEOksjS7j5azF3yPqRt/Svm+igd3a1z37w34w0QRfEWOfVofN1K+uDZBmJM6sHVNvtyoH4Vcu ta8Lap4A0K01zWf7OOkX0Ny8YgeRpdhcBFwP4lPUZ2968K0GAzatFxwhLH8P/r4rd8T/APIKH/XU fyNYTnaqkj2cPhFUy+dSXR3XyX/BPW73xx4Yk+Oum60mtWp06PRTA9yCdqyb5Dt6dcEfnWRpXjLQ 10b4ox3Grw+bqc94bIOxJnVkdU2+3KgfhXhFFbninrfi7xJo198CvDGi2uoQy6ja3MbzWyk7kASU En8WH51q/ETxD4b8XL4b8Swa9DHeWrQrLpxjO9QzhnJbPG3B7H614fRQB9Fan8TPDll8arHWYr9L jTJtHFjNcQqWETGZnyeh4wueDwelU9Z8W2emW/iG90zxh4fVb5nK21jpCtcXQYtgSvlPmG7ljnqx 9j4DRQB7r4H8YWVt4OtLK78ZaZOkeBPpes6YzLBH02xsp+c8HHJGGGQDxXm3xEvfD2o+NL248MQp FpTBAgii8pCwUbiqYG0Z7Y9T3rk6KACiiigAooooA6zwrcFoJrcnlSHX8ev8h+dP8VQbraCcfwMV P4jP9KzPDDEaoQDwyEH3ra8Sf8ghv99a45e7XTR9XQl7bKJRl9m/4ao4miiiuw+UCvt3wL/yT3w1 /wBgq1/9FLXxFX274F/5J74a/wCwVa/+iloA+Mtd/wCRh1P/AK+5f/QzWfWhrv8AyMOp/wDX3L/6 Gaz6ACiiigB3NfQHwr8UJrnh/wDsu6cNd2ShMH+OHop/D7p/D1r5+71t+GteuPDeuW+pW5JMZxIm cCRD95T+H64PavPzTArGYdwXxLVepvQqeznfoanxA8LHwt4ikiiU/Yrgebbt6L3X8D+mPWuQr6X8 RaRYfEDwgjW0itvXzrScDG18Hg+x5BH9RXzjd2k1hdzWlzGY54XMciHqrA4IrHKMe8TR5Knxw0f+ f9dR4ilySutmVaKKK9Y5zU0vV7jS3PlndG33kbof8DXUXawa/oJuVTbKqsy+qsOoz6GuF5z9a6qw nax8ITuxOZXZI+vcAcfkxqWjgxdFJxqQ0ldHJnrRQetFUd4UUUUAezaTonhvwV4S8O6hqPh//hIf EfiAh7OzmfbGikrtGOQc7k6g5yRwM1BDpd5d/E7wsNe8EafokV1OyNbxW4WG5C9cxkkcArn1696r 6Z4v8NeI/Alj4a8UXlzpl7pUmdO1S3gMgjXHG4A7vwGPurzkVq3vjbwxBr3w/ih16TUbbQnm+2X8 lrKm4Nswdpyx+6fWgCx4V8J6Fqnifx6ItGs9Q1fTL+Y6fpk8nlQGMSOMBRgdgvPyj5emc15T4rlm m8Q3K3ei22jXcZCTWdtEY0V+5CknGc5646Y4rq4pvCmqeLPEeqz+Lb7QrqXU5riwvILaSRXiaQsD hQHVucjkVS+Jvi3TvFeraYdOa4mgsLFLU3d2gE1wwJJZiDz1z25LetAF7+yLPxD8INHn0+xto9Ws 9X/s+4mSNVeVZclGcj5mALIo4J4NdN8TNA0XUtLSLw3pFnZz6ZrY0eRoIlV5N8SEPJsHI3gqCcnP TkkVg/CDxdofh+51Ky8SXBh0y48i6jO2RgLiGUOmAgJ64PodgB9KufD3xxoCav4gk8VXjW8F7qMG qW7mN32zxzNJ0jU9cjPQcUAM8beDl134harp3h6307TtL0O1iS5uXCwQR8AlnZV5bLN1yTsPpWZZ /Cm9L6ddTalp93pV9OltFeWExkTzGbaAcqCOfbtipvD/AI2027vfGFjrS3EFn4nl3/abePe9u/mM y5XOSuHPAJ6AAHJrobnxR4d8H6Z4X8KWF+97b2+rwahfag9u0aoiyhiAnLZ49+B3J4DOevup2bL3 hn4Zw+G/ifpPmX1jeASTJLZFg7ovkPtZlI4zwQD6g15/4k8C3Ol2VxrOpXMNjJeXki2Gnsp86dd/ 38dFTnqfb1Geh0zxzpcXx7uPEcuok6NNLIDceU5ynklE+Xbu67R0rZ8YXOleOvDjJqF2sOu2Ez/Y rv7OxF1BkkIzKDg46ZxyAeNxwiFUjS0qS9L9jgfFnw9Pg21dNU12wOqhEkWwgWRmZGbGd5UDjn8q 9G+I3wzk8QePHSwvtKsJ7i3X7HZyEobjYMyEBQduBnGeuG7AmrGp32mf8Ie+nz69P4jv/PVrae8t Nstqg7byMscZBOTnJ6Vq3fijSZfijZ6yt4Tp0UJRpfLfg+Wwxtxnqw7d6LmE8fTjKyaeq69/8jyT wT4L1S7u73UGe1trGwka2nubiTZH5v8AdUgEsenQdx61e1T4Y6ve+PdO02S4tI4dZR5LS8jfzInE cW5umD2Hb+IV12hXmlRaHq/h6+vZYYLvUnvoLxINwXPGHUEE/dHPv2wK6TTL7SdQ8b+ELPTWkuF0 iK4RLhwU3tJEQxC9f4e/r7ZpXVzOOIpOv7RO90l579jhdM+GM+jabqF4upWF7e2n/HzbQNueBRnd z04749COorI0vwxZ3njDRZBFFsN/B58Ei7o5U8xdwIPHIzx0NdNqfjbwzpNt4vuLTV7yfUdUjmtY 9Oe1MbW7sWBcyZKtgknrnGBjOTXD+G/HMkPiLTLnV9rIl5FJNcjIKqJAWYqAckDnAHP1osE6Fb2n toO3dHrHjLw5pp1rRbjStPtU09dZttPv7SOFRGo81SCUAxtYEA/UeprzTxD4JuNZ+I3ia20mKx0/ TdOl3zTSkQ29shwBkgYHcgAdjiu2T4gaXpvj5tUluRP4a1GT97J5bkKy7XilCYzlWTHTIyeMisD/ AITnw1ca/wCObG8vLhdK8ROnk31vbkmPZnBZTtbHPTH8zTOrDWcW0rXbv+Rycvw41CC70fff2Eul 6tcLawapayGWASHja3AYHORyB0PoaF+HeoDUfFNrc3McEXh2J5J5mQkSc/IFHq4GRk1q+LPEXh2x 8A6X4R8Nalc6k1tfG+l1AwtAofawCqrfMPvfht6nPGp49+IGh614Kjj0t/8Aid6x9nfW/wByV5hT AXO0A/Nggg9F7ZpnQYGmfDCa907TZbvX9M0+/wBUjEmn2NyWDzq3CHOMDceB17VRs/h9ql14VvNc e4trSOy1FrC7iu38swFVBLNnrgsF2gFs9BXoWk/E6C60DSLWHx1c+F5LGyjtZoH0VLuOVkUDejAE jI7H04A78pdeK9Nufhbr2lXOpfadZvdfa+/1DJ5yEJmTgbVyQ3y549KALP8AwpPWI72Oym1nR47u 7JGnReazfbVVd7MpCnaAvcjr+BOl4U8Lw6x8E9Xt7u4stNkg1s+fe3mFEKLHFlc9eWOAB1Jqy/j7 w43xa8I63/ahOmafpAt7mXyJcRy+XMCNu3J5dOQCPyqv4e8ReFdQ8A+IPC+p6xPZzatrLzQNDaST EIfLKMVA5BZMbc59u9AGFF8KNQPjTS9Eju4L2yvoFu0vrU5QwZ+Zhnv27/eX1r1rx7K/g74f3E+j KrLCEtUMKnFsG+UOfTHQH+8R610OlNp/hfQ9OtROZLTS7Uq1zIgQ4xlmwfujjoa8k+JPjq217Q7y LTfHX2y0uWiH9jnSDEQoIbJmIzkMoPH06V4rVHMq2usYP5dP667HSnOjHs2cr40+Gt74LSeXUdX0 6STcvkQLKfPnU4zIEPRQSRknOVPGKyvAsfhyXxJEPEiXM1rgCG3gHE0pYBVc5BC8knHp+ep8XPEO l+J/HcupaPdfabRreNBJ5bJkgcjDAH9K5HSZo7bWbG4mbbFFcRu7YzgBgSeK9o5jufiH4aF58aL3 w9oVlb2/nS28cEMMYjjQtDGScKMAcljgeprrPiroHhrSPhjYxaJZWn2iy1RNPuL1IFWWZ0ik8zc4 5PzDkE9R7Cud1/4kx6Z8X9X8V+G1s9QiuIY4oZLuCTaB5UasyjKsrZQrn0J9al1v4g6Rq/wkj0oW OmxatJqLSSWkUEwWJSr/AL5WZiN5JA5Y/ePFAHm0Wl6hcW/2iGxuZISCfMSJiuB15Ax2r1H4JaZ4 Q1PVzbarZPqGsSGQxwzxK1tHEqg7iD95iSRyOPbrXnVt4o1+xsBp9rrmp29kFZRbRXciRgMSSNoO OSTn6muj+EfiHS/DHjuLUtZuvs1otvIhk8tnwSOBhQT+lAGx8ItJW90zxVqC6Vpep3lnbwJaQalE jxmV2bHLkAfdx1HUVhfEaHWbfWLe31rwxpWgypEdiabbiKOZSfvZVmDH8eO9ZPhnTfDmpC6j17X5 dGZdhglWza4Ruu4MFIIP3cfU16Fdf2X8TvEvhrwfotxdjRNFtJFa/uAPMKhVy2D0HyIo+vQAUAcL 4ViXZcTH73Cj2HU/0rplvLCwilutQ0WLVkjTMVvLM0aB8j5jt+9gbuD6+1czo1zb2+s3dnbStJaO 7CB3GCwUnaSOxK16R4Kl8P22sm68QTbYoAHhQxs6u+e4UHp1xXDUuq1z7HB8lTKnFJvRppb3/qxT 8beFLK8PgVDpNlo+u65Jsu7WxBSNUZkCtt52EBvT+8OdtT3mk+F9fh8caRa+HbfTZvDkM0tveQux kkMJYEODwQ239fWqvjDUrK18baZ4zPiqbVriLUIW+xRWD24itlYsVR2bGO2O+8k96k1LxL4O0S38 Z6louvy6ne+JI5IhaNZSRfZ/NLFyXbAbG44x7deTXammro+RnTnCXLJWfmSaNpHhzTr3wf4W1Hw1 bX0+uael3c3skrLLH52/aFxjG0KP8e9YGhLZaL4wu/Clp4VsNd1T+1ZbWG71F2ZPKVtmDGPlGArt v5xnp8tdBp/ijwVfX/hPxRqfiG6ttT0PTo7WbT2snla4eINgiQfKNxYnk+mcc07wV4t8HWQ13xHe azHpfirVbmd45ZbGW5S0R33fKqjBJyerdh2yCyDhvinpWkaL8QtS0/RY1itIvLJiUkrG5QFlBJPc 9OxJHauKroPFkGmQ6y0mm+I319bhTPPePavAxlZm3AhyST0Of9r2rn6ACiiigAooooAKKKKAN3wx GW1MsMYVCT/L+tbPiVtukn3dQP1P9Kz/AAnHmW4lwPlVVzj1/wD1VY8VylLOCHszlvyGP61xz1rp H1OG/d5ROT63/F2ORooorsPlgr7d8C/8k98Nf9gq1/8ARS18RV9u+Bf+Se+Gv+wVa/8AopaAPjLX f+Rh1P8A6+5f/QzWfWhrv/Iw6n/19y/+hms+gAooooAKKKKAPSvhf42/sO/XSL+b/iXXTjY7HiCQ 8Z9lPGfTg8c11HxX8FHULdvEGnw5uoV/0pFHMiDgNgd1HX2HtXh4r3H4afEJNRih0LVpdt6oCW87 t/rx2Vif4/T1+vX57MsNVw1ZY7DLVfEu6/r/ADOyjUjOPsp/I8N6UV6x8Tfh99hZ9c0e2xanLXME f/LI/wB9R/d9R2+nTyivZweLpYqkqtN/8B9mc9SnKnLlYmOa6C/XPhPTimdoZg3+9k//AF65/PNd FopXULG40qUgbx5kJPZh1/z9a3Zx4jRRn0i7v02OdpKnngktpnjkQo6nDKe1Q96Z0Jpq6EooooAK KKKAFqxaRrNdxRudqPIqk+gJqvTlYowZSQRyMdqBNXVkeh3ltp1jYjzLOMwBgGwoO3Jxn1rPl8KW FyqS2tw0aPzx84I9u/8AOrgkXXPDsm05kdMMB/eHOPzxXM6Pr0mlq0ToZYTyF3Y2n2qFc8OhCu4S dOT5ovVd/vNe8aw8NRqttAJbphkNIclR6n/62K5W7upb25e4nbdIx5NPvryS/vHuJOrHgZ6DsKq9 McVSR6uHo8keaesnuxO9btj4lvbKBYSEkRBhQ4OQPQEVhUUGtSlCouWaudK3i+7LfJbwAehDH+tS QeMZlb9/aoy/9MyVI/PNctRRZGDwOHatyHdDxZpzIWYTKw7bBz+tMk8bPZJHcaRNNb3o6SrwY8jB we/BI/GuIopcqM4ZdQhJSV9PMlmmknmkmlYtJIxZmPUknJNQ0UVR3HS2OZ/Cd7G44jcOhPOOmR/n 1rm8dq7fw3BHcaBLAzcSu4bBGRkAcflVK/8ACbxoXs5TIf7j4Bx7H/8AVUpnn08VThVlTm7anKUV IysjFWBDA4II5FR1R6AUUUUAOxxXsnwo8EBUTxJqUIJYf6FG46c/60j1/u/n6Gsf4aeADrU6axq0 B/s2PmGN+PPcH07oOc+p49a6/wCI/j+LQbSTRtKkB1KRdrvGeLZT/wCzEdB26+mfnsyxlTEVPqOF 1k/ifZdTso0lBe0qbdDm/iv43+2Tt4f06b/R4W/0t0biRx/ACDyB39x7V5PQTmivZweEp4WiqVPp +L7nPVqOpLmYlFFFdBmFFFFABRRRQAUUUUATwytDMkqHDIwYH3FehQSrcW8cq/dkUMPbNecDPaux 8M3Pm6eYCfmibj6Hp+ua5cVG8ebsfRcPYjkrSpPaS/FGrc28d1bvDIMhxj6e9cDd272lzJC/VGI+ vvXolcx4nsm3rdquVxhiB09M1lhp2lyvqeln2EVSkq0VrH8v+AcxRRRXefFhRRRQAUUUUAFFFFAB RRQOtAHZ+GIgmmNJxl3P5AD/AOvWX4om336Rr/AgB+pOf8K6HSIvJ0m2X1Td+fP9a5DWpPN1a5bO cPt/Lj+lclL3qzZ9TmP7nLKdPvb8rv8AEzqKKK6z5YK+3fAv/JPfDX/YKtf/AEUtfEVfbvgX/knv hr/sFWv/AKKWgD4y13/kYdT/AOvuX/0M1n1oa7/yMOp/9fcv/oZrPoAKKKKACiiigAqaKWSGVJYn ZJEYMrKcFSOhB9ahooA9/wDh78QovEMC6TqzouqKuFY4C3K4/wDQvUd+o9uT+I/w4OltLrWiwk2J +ae3Uf6j1ZR/c/l9OnmcUskEqSxOySIwZWU4KkdCD617x8PfiFF4hhXSdWdF1RVwrnAW5XH/AKF6 jv1Ht83isLVy6q8XhFeD+KP9f0vQ7adSNaPJU36M8CqSOV4ZFkicq6nIYdRXtvif4a6ZbNLqWn2O 6EZeSCMuSvrtUdR7Afp04ePUPDtuxRfJRhwcwNn6fdzXs4THUcVT56bv+a9TysTWnRk4OnJ/LRmd Hc2PiBEivVaK8VcCZRwfr/8AX/MZqheeGtQtSSsfnx54aPkn8OtdemtaY2At3EPTJxUyX1mzYW6g c9cLKp/rXRc8lYutTfuQaj2ev3djzN1ZDhgQR1BFMrvtSs7DWJWt0eNblU3rIuDxnGDjrWWng2Qo TJdoG7BULD8+P5U7nowx9JxvU919jlu1B6Vau7KexuDDOhVh37Eeorfj/s3R7C3e5tRcXFwnmfMA QAeg56flRc3nWUUnFXvtY5Ydcdq7iw0HTbG2W6uWjl+UMXcjYM+g/wAay3h0zXExZBbS8/55EYR/ pj/PtTtG8xxd6Ld5BdDsVz91hzx/P8KTOXEzlUho3G2662Nf+39GtU2wOuP7scZA/kBXCyMHkZgM AknA6CiVDHIyNncpII9DUdUlY3w+GhQu4tu/cSiiimdIUUUUAFFFFABRRRQAUUUUASKzIwKsQR0I NbmleI57JwtwzzQYxgnJX3BP8qwKKVjOpRhUjyzVzsLnVPD92d81s7u3XCYb8TkfzrL8Q2VraS2z WkZjSWPdgkn+dYgPINdnqGiz6rLZsrqkKwICzHODznA/Kp2ONxhhZx958uu7ON5wea7z4e+AJvE1 yt/fK0WlRNycczsP4V9vU/gOenQ+GvhVbXrRXN+JxajkgttMn0AGQPfP0rrvGXjOw8EaXHY2McRv jHttrVRhYl6BmA6D0Hf8zXh47M51J/VcHrN7vt/wfyPXwsIzj7WekfPqM8e+N4fB+mx2OnpEdQlT EMYA226DgMV/kOnB9MV8+3FzNd3MlxcSvJNIxd3c5LE9STT76+utSvZbu8mea4lbc8jnJJ/z2qpX fl2XwwVOy1k933/4Aq1V1JX6CUUUV6BiFFFFABRRRQAUUUUAFFFFAC1o6VqLaddiQLuQ8MvqKzqX 6Ck0mrM0pVZUpqcHZo9IimSeJJI2DI4yCKWSNJYmjkUMjDBHqK4aw1a609v3bBo85KN0P+FdTYa5 a3uFJ8qT+6x6/Q968+pQlDVbH22DzbD4qKhU0l2ez9DmtW0iSwlLKrNAT8r9cex96y/TmvS2VXUq 6hlI5BGQa5vV/D6hWuLJTxy8f9V/wreliE/dkeTmWSSp3q0NV26r07nLUUpBBwaSuo+bCiiigAoo ooAWhR8w+tFTW67541xnLAY9eaTKgrySPRIkEUSRjoqhR+Fee3rl7yZz1LsT+dei15rKxaVyepPN cuF3bPqOInanSivP9COiiius+VCvt3wL/wAk98Nf9gq1/wDRS18RV9u+Bf8Aknvhr/sFWv8A6KWg D4y13/kYdT/6+5f/AEM1n1oa7/yMOp/9fcv/AKGaz6ACiiigAooooAKKKKACpopZIZUlidkkRgys pwVI6EH1qGigD2XwX8Wtxi07xGwB4VL4cemPMH/s35jvXR+LvhzpXiqH7fp7xWt/IN4nj5jnB5yw HXP94c+ua+ecGuz8IfELU/CriEk3dgfvW0jEbfdD/D/L2714GLymdKf1jAvll26P+vuOuniFJclX VHPazoepaDfNZ6lbPBMOQG6MPVT0I+lZoJ9TX0xa6h4X+IukNAVS5QfM8Eo2zQn14OR9QfavL/F3 wp1DR2e70gSX1lkny1GZYh7gfeHuPyrXB5zCcvYYlclTz2ZNTDNLmhqjz61uprSdZoXKuhyCK3o/ GF0qAPbxMR3GRXNsrKxVgQRwQe1Nr2bI4auHpVf4kbnSP4kivFCX9jHKA2QVYqR/n6iszVNROpXQ lEYjREEaKOyj1/Os6kosEKFOD91EquyOGUkMDkEHkV12nTJrPkzbguoWxBb/AKaLnn+v+TXHdun4 1Nb3UtpOs0DlJF6EUmhV6PtI6aNbF7xAETW7oR/dJB/EgE/rmsqpp5pLiZ5pG3O5yxPc1FTRpTi4 wUX0Q2iiimUFFFFABRRRQAUUUUAFFFFAC0UD2Feg+FPhfq2vNHc34ewsCclpFxI4/wBlT6+p4781 jXxFLDw56srIuEJTdoo4zTtOvdVu0tLG1luJ36Rxrk/U+g9zwK938E+AX0W2SbWZ/tVxsGy24McP t/tH9Pr1rUji8L/DnRuWitEbPzOd005H6t26cD2rybxh8UNQ8RK1nYK1jpx+8qt+8l/3iOg9h+JN fPTxOLzR+zwy5KfWT6/15fedLo0aavVXM+x23jT4rW2leZYaEY7m85V7jO6KI/7OOHPX2B9eRXiV 7e3Oo3ct3dzPNcSHc8jnJY1WzQK9rA5fRwcOWmter6swq1ZVHqJRRRXaZBRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABSgkd6SigDotH11rcrb3OWiz8rHqv8AiK6sEMAQQQehHevNOc12HhzUftFt9mkb 95GPlz3X/wCt/hXHiKStzI+oyTMpOSw9V+n+RmeI7D7Pe+ei4jl547N3/wAfzrCxnvXoGqWgvdPl ixlwNyf7w/zj8a4A5Bx6GtaE+aNn0PPzrB/V8RzR+GWv+YyiiitzxwooooAXNaehwmbV4B2Vtx9s c1mgV0XhWINczykZ2qAPbJ/+tWdV8sGzty6l7XFQh5/lqdBqM32fTp5c4whGfc8D9TXnvJNdb4ou RHZxwA/NI24/Qf8A18flXJDI6Vlho2hfuejxBW58Sqa+yvxeo2iiiuk8EK+3fAv/ACT3w1/2CrX/ ANFLXxFX274F/wCSe+Gv+wVa/wDopaAPjLXf+Rh1P/r7l/8AQzWfWhrv/Iw6n/19y/8AoZrPoAKK KKACiiigAooooAKKKKACiiigC3ZX91p10l1ZzyQzxnKyI2CK9c8LfGONkS18RxlXHH2yFcg+7oOn 1X8hXjNFcmMwFDFxtVjr36r5mtOtOm/dZ9LX2geE/Hlj9qVYLgsOLq2YLKp9z/RgfpXmuv8Awe1j T8y6TKmow8nZgRyKPoThvwOT6VwOnarf6TcfaNPuprabpuicrkeh9a9J0P403sCpDrVil0BwZ4CI 3PuV+6T9NteN9SzDA/7rPnh/K/6/VHR7WlV+NWfc80vtOvdNuTb31rNbTKMmOVCrY9cGqdfStn4q 8H+Mrb7K89rKX4+zXiBWz7BuCeM/KTWTqvwd8PXrl7GS4sGP8KN5idPRuevvWtPPoQfJi6bhL8P8 yZYRtXpu6PAKMV6ff/BXWYCxsL60u1HQPuic/hyP1rl73wB4qsTibRLpv+uCiX/0AmvTo5jhK3wV F99n9zMZUKkd0cvRVm5s7m0fZcW8sLf3ZEKn9ar49q7E01dGQlFFFABRRRigBcUVNDBLcSCKGNpH PRUBJP4Vt2XgrxLflRb6Le4bBVpIjGpB6Hc2BionVpwV5yS9WUouWyOeor0nTvg1r90VN7Pa2SkD ILmRx+C8frXXaV8GNFtWD6jeXF8R/Aq+Sh57gEn06H1rza2d4Kj9u78tf+B+JrHDVJdDxC2tp7u4 SG2hkmlc4SONSzMfQAcmu60D4S69qrLJqCDTbY8ky/NIR7IOn44r1abVPB3ga2aFZLKyYdYYBulb 6gZbt1P51xGt/GtiHi0XTwD0We5OT9Qg/qfwrheZY/F6YSlyr+Z/1b8zb2NKn8crvsdlpXg7wp4M gW+dIVlj63t64JB9RnhT16DNc14m+Mlpbq9v4fh+0TdPtUykRr7qvU/jj8a8k1bXNS1y6Nxqd5Ld S9i54Ueijoo9gBWZWtDJIyn7XGTdSX4f1/ViZ4ppctNWRf1HVLzV7x7u/uZLid+rOcn6ew9hVCii veUVFJRVkcjd9WJRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAC1d0y7NnexS54B 5+h4P6VTxmjHek1dWZpTnKnNTjutT0sEMAQQQehHevPtQQR6jcIM4WQgZ+tdpo8pl0i2ds527efY kf0rjdV/5Ct1/wBdW/ma5MOrSkj6XPZqrh6VRddfvRRooorsPlgooooAcecV2nhy38nTPMIIaRi3 Pp0FcailpAo5JOBXeXLrpmkEjAMUYVfdug/WufEO6UV1PeyOEYzniJ7QRyuvXX2rU32nKx/IMe3X 9c1l5xSlixJPem1vGKikkePXrSrVZVJbt3EooopmIV9u+Bf+Se+Gv+wVa/8Aopa+Iq+3fAv/ACT3 w1/2CrX/ANFLQB8Za7/yMOp/9fcv/oZrPrQ13/kYdT/6+5f/AEM1n0AFFFFABRRRQAUUUUAFFFFA BRRRQAUUUUAFFFFAC963dM8W6/pCotlq11HGmNsfmbkGPRWyP0rC6UZqZ04VFyzSa89RqTTuj0rT fjNr1sgS+trW8UfxFTG56d149e3eupsvjZo8ij7bpl5A3H+qKyj35JX+VeGUV5tbJMDV1cLemhtH E1I9T6Ptvih4PvlMcuoGLeShSeB8EY7nBGPqal+1/D2+And/DkhYYzMIQ3HqG5r5spK4/wDV6jF3 pVJR+Zr9ck/iSZ9Jnwv4DZiTZaVz6SKP60N8MvBszGT+x1O/5vluJQOfTDY/KvmzNLn6/nS/sTEL 4cTJff8A5h9ah1gv6+R9JN4Q8C2x8l7DTUZPlKyS/MPrls/nThF8P9PIQjw7FJFyN5h3r3B55zXz Vn3oyaayKo/jxEn/AF6sPrSW0EfSMvxG8F6ZEY4tSiwBuEdtAxB/JcZ+prIu/jR4fh3LbWl9cMCM EoqKfxLZ/SvBacPxqocO4Razcper/wAhPGVHtZHqGpfGrVpwVsNPtLVT3cmVh06Hgevbv7VyWpeO vEuqlhc6xchD1SJvLUj0wuM/jXNdaK9Khl2Eofw6a/N/e9TGVepLdiEmiiiuwyCiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKVfvD60AjvNEXy9Gt1YjhSc/Uk1xd zL5t1NIerOTn6mvQI44mtFiQhotmwFW6jGOoqidA0wn/AI9R/wB9t/jXDTqxjJt9T7LHZdVxFGlT ptWiuvojhaK7r+wNM/59R/323+NH9gaZ/wA+o/77b/GtvrUOzPK/1fxH80fv/wCAcN9BWja6LeXg DJEVQ/xv8o/+v+FdVFBpNidy/ZkI7lwSPpk5pJdd06If8fG8+iqT/wDWqXXk/gibUsnw9PXE1V6J /qUrDw4ba4jnmn3MpDBUXjI6c/8A1qg8T3isY7RGztOXx2PYfzqW58UxBSLeFyxHDSYAH4DOa5eW V5pDI7FixySfWnThOUuaoTjsXhaNB4fCfa3ev6kVFFFdJ88FFFFABX274F/5J74a/wCwVa/+ilr4 ir7d8C/8k98Nf9gq1/8ARS0AfGWu/wDIw6n/ANfcv/oZrPrQ13/kYdT/AOvuX/0M1n0AFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUALub+8fzo3N/eP50l FFh3Yu5v7x/Ojc394/nSUUBdi5PqaSiigQUUUUAFFFFABRRRQAV9u+Bf+Se+Gv8AsFWv/opa+Iq+ 3fAv/JPfDX/YKtf/AEUtAHxnrv8AyMOp/wDX3L/6Gaz6+oZvAvhieaSaXRrZpJGLMxBySTknrTP+ EA8J/wDQCtPyP+NfM/604b+WX4f5nd9Rn3R8w0V9Pf8ACAeE/wDoBWn5H/Gj/hAPCf8A0ArT8j/j R/rThv5Zfh/mH1GfdHzDRX09/wAIB4T/AOgFafkf8aP+EA8J/wDQCtPyP+NH+tOG/ll+H+YfUZ90 fMNFfT3/AAgHhP8A6AVr+R/xo/4QDwn/ANAK0/I/40f604b+WX4f5h9Rn3R8w0V9Pf8ACAeE/wDo BWn5H/Gj/hAPCf8A0ArT8j/jR/rThv5Zfh/mH1GfdHzDRX09/wAIB4T/AOgFafkf8aP+EA8J/wDQ CtPyP+NH+tOG/ll+H+YfUZ90fMNFfT3/AAgHhP8A6AVr+R/xo/4QDwn/ANAK0/I/40f604b+WX4f 5h9Rn3R8w0V9Pf8ACAeE/wDoBWn5H/Gj/hAPCf8A0ArT8j/jR/rThv5Zfh/mH1GfdHzDRX09/wAI B4T/AOgFafkf8aP+EA8J/wDQCtPyP+NH+tOG/ll+H+YfUZ90fMNFfT3/AAgHhP8A6AVp+R/xo/4Q Dwn/ANAK0/I/40f604b+WX4f5h9Rn3R8w0V9Pf8ACAeE/wDoBWn5H/Gj/hAPCf8A0ArT8j/jR/rT hv5Zfh/mH1GfdHzDRX09/wAIB4T/AOgFafkf8aP+EA8J/wDQCtPyP+NH+tOG/ll+H+YfUZ90fMNF fT3/AAgHhP8A6AVp+R/xo/4QDwn/ANAK0/I/40f604b+WX4f5h9Rn3R8w0V9Pf8ACAeE/wDoBWn5 H/Gj/hAPCf8A0ArT8j/jR/rThv5Zfh/mH1GfdHzDRX09/wAIB4T/AOgFafkf8aP+EA8J/wDQCtPy P+NH+tOG/ll+H+YfUZ90fMNFfT3/AAgHhP8A6AVp+R/xo/4QDwn/ANAK0/I/40f604b+WX4f5h9R n3R8w0V9Pf8ACAeE/wDoBWn5H/Gj/hAPCf8A0ArT8j/jR/rThv5Zfh/mH1GfdHzDRX09/wAIB4T/ AOgFafkf8aP+EA8J/wDQCtPyP+NH+tOG/ll+H+YfUZ90fMNFfT3/AAgHhP8A6AVp+R/xo/4QDwn/ ANAK0/I/40f604b+WX4f5h9Rn3R8w0V9Pf8ACAeE/wDoBWn5H/Gj/hAPCf8A0ArT8j/jR/rThv5Z fh/mH1GfdHzDRX09/wAIB4T/AOgFafkf8aP+EA8J/wDQCtPyP+NH+tOG/ll+H+YfUZ90fMNFfT3/ AAgHhP8A6AVp+R/xo/4QDwn/ANAK0/I/40f604b+WX4f5h9Rn3R8w0V9Pf8ACAeE/wDoBWn5H/Gj /hAPCf8A0ArT8j/jR/rThv5Zfh/mH1GfdHzDRX09/wAIB4T/AOgFafkf8aP+EA8J/wDQCtPyP+NH +tOG/ll+H+YfUZ90fMNFfT3/AAgHhP8A6AVp+R/xo/4QDwn/ANAK0/I/40f604b+WX4f5h9Rn3R8 w0V9Pf8ACAeE/wDoBWn5H/Gj/hAPCf8A0ArT8j/jR/rThv5Zfh/mH1GfdHzDRX09/wAIB4T/AOgF afkf8aP+EA8J/wDQCtPyP+NH+tOG/ll+H+YfUZ90fMNFfT3/AAgHhP8A6AVp+R/xo/4QDwn/ANAK 0/I/40f604b+WX4f5h9Rn3R8w0V9Pf8ACAeE/wDoBWn5H/Gj/hAPCf8A0ArT8j/jR/rThv5Zfh/m H1GfdHzDRX09/wAIB4T/AOgFafkf8aP+EA8J/wDQCtPyP+NH+tOG/ll+H+YfUZ90fMNFfT3/AAgH hP8A6AVp+R/xo/4QDwn/ANAK0/I/40f604b+WX4f5h9Rn3R8w0V9Pf8ACAeE/wDoBWn5H/Gj/hAP Cf8A0ArT8j/jR/rThv5Zfh/mH1GfdHzDRX09/wAIB4T/AOgFafkf8aP+EA8J/wDQCtPyP+NH+tOG /ll+H+YfUZ90fMNFfT3/AAgHhP8A6AVp+R/xo/4QDwn/ANAK0/I/40f604b+WX4f5h9Rn3R8xc19 t+Bf+SfeGv8AsFWv/opa4H/hAPCeP+QHafkf8a9L0uCK00iytreJUghgSONR/CoUAD8q7MLnlHEX 5IvQxq4aULXZzFRyzxQKpldUDOEXJ6sTgD86krD8UTC30+3mKs4ju4nKoMk4bOB71+fYel7WooPq e5CHNJR7l6TWNPjETPdxKJmKx5P3iDg4/HirgkQyGMOu9QGK55AOcHH4H8jXDaVe20N5pj3UbbZo p1VTHuKsZiRkduhrWhumHjy5iIJRrcRg+jKFbjnph/zrvq4FRbSvom/Wzsbzw9m0uib+52NabW9N gginlvI0imBMbE8MB1x+Yqx9ttmn8kTJ5hcx7c87gu4j8ua5q0gtpvDWiNNHGdsse0uOmSePxOPr VWC8VfFot/LlLJezSbguVI8nGB78fyprA05KSje6v+GwewTva+l/wOymnjtommmdY415ZmPAqrc6 zp9ocXF3EnzlOW/iABI/UfnXHx+IL3WtK1i3uYcMibkCRkY5A2n39Px9KuzxRSm4EiK4/tqMYYZ6 hAf0pxy5Qdqu/l8v8x/VuR2n+H9eZ1C39q7FVmUkMqkD1YZA/EUlzqFpaK5uJ0iCBS249AxIH5kH 8qwJnEetzIgA3ajCp+nkZH8qs6uiuuthlDD+zkOCM8gykH86z+qQUo3vZpP77f5mbpxTV+tvxNOP VrCWESLdRmMo0obPGxTgn8DTP7c0wW6XJvYhE77FctwW9K5vWEhjsCiIFYaWdoUYAG5c/rin6pda dcx2F2IJU02SOaOVkhwULKoBxj2ODzWqwNOVnrZt/h/maKhHzs7nY9Kz21vTVFwTeRfuP9bg/c5x z+PFY134juYfF0el+WPszbUyEO7LY568j/E9cVQt7i3uPDV3axREzw3I80+X94eeD178Gs6eAdlK ps7bdm92KOGejl1t9zOuXUrMxRSi4jKSozo277yr94/h3qX7VB50cXnx+ZIu5E3jLD1A71xF02Ul ACqqrqKqqjAAAHatXR7C3utXurqaPfNbiERMSfk/dDp+ZqquBhTg5tvr+dkKVCKV7/1ex0M11Bbx SySSqqRffYn7vQ8/mKit9TsrlY2huI3Em7Zg9dvX8sisPQrhb/VvEFvIvmRicApJyD1U8enyj9Ko 3caRaPpexFUHSp2OBjkxpk0oYKDn7OTd9PxVwVFc3K9/+Bc6mHVLKcQtDcxuszFUIP3iOoqeCeO6 gSeBw8bjKsOhFcHeXC2WpwtEv7qK7iIUjHBhTJ+uKX/hJLnSNO0S3gjUxvEHkLKTuGSMD+f5VpPK 7pOn17+jf+Rq8G2k49f+CzvfMTzfK3r5mN2zPOPXFM+2W2+VPPj3RLukG4fIPU+nSsG4uyPGlgsZ +VoGSTPGNwZgMdc/J/Ksw/ZV8K3xwv2yZZpHYj5nUSFck9+g/wAmsoYG6V3vb8W/8jJYe9r9bfjf /I7Bby2byCs8bCfIiKsDvwCTjHXgGk+32na4iP7wRcODhz0U+9chazI7WtxakJA1zcvBhduF8k9s eoJqe3023tdD0qW3h2y3E1s0rDJLHIOf1NW8BCLs29f83v6W+8boKO7/AK1OnXULRzhLiNvkZ/lb PyqcMfwPFQ2+s6bdY8m7ik+cJwf4jkgfofyNYHh8K2oWoPINvccH/rvUdvBFCtv5caIP7ZkX5VA4 AcAfhR9RpJuLbuv+D/kDoxTauzqvttmRD/pEOZv9WN4+f1x602PUbOW+ezjnja4jGWjB5HT/ABFc XHJbrp+lxSLunmtVSEbNx3eYD+HStyyv7SG71dVhJuoGklJEf3hgdG/LipqYKME7Xe/52uEsOop2 u9/zsbt1dQWdu09zKsUS9WY4AqCPVLKWMtHcxsuwSZB/hJIB/MEVyEHiZ7/QZp9Rj3CG6iLFE4K+ ZuwPoBjH0yeag8RXsS6kfs6bYLjTSgBUrj5mYccYOVrSlll3yTvfXXppb/MuOEfNyPf8DvBd2xO3 z48+Z5WNw+/jO3645xTE1CzdIXW5ixP/AKrLgGT6DvXObg/i/wCwbdqrcG7+uIVUfqT+RrHNxEE0 63UsZWtLfyAF53ebl8Ht92iGXRlbV7J/fclYa9tfP77ncnU7EGcG5jzB/rfm+59ak+1weeIPNXzS +wJnndt3Y/755rjL6AiyneKJR5kN4oCphiRcLwfzGB9aqy6t5hsdRY7R9vQyZPTEUYb096pZZGSv F9181/TKjhVJXj5/edxcapY2wlM9xHGImCPuP3SRkD8qcmoWki7knRgPLPX+/wDc/PtXCrfRiS5u 7lD5f9rKzLtzxsYDjvxirt3erH4j8lFYQXf2TYdpUZWRGAxj0J4pPLYpqOt7X8ulweFtp/XS51lr qdnezSRW1wkkkf31X+HtTry/tNPRHu544lc7VLnGTWLJLHpEWvXdrAhmjkB2qmf+WaHJA7ZLEn6n tXPya9/aOnWN1qCbtkssTYj4cmIgcdDyazp5eqkuZX5fx2uTDDc7vHb8drnd/brTA/fx4JVQd3Ut 93HrntUEWs6bNFNJFeROkPMhVshR61zMa7bKzVgQRJYgg9uBWdBJbHRtSghULJBBIj4XH/LUlee/ BrSOXQcW7vew44aLW73R6E9xFFLHEzqJJMlFzy2OuPzFJDcQ3MfmQyxyJnG5GDDPpkVgeJiBMnr9 hu9pz0OFrU0ayt7HTIktoxGsirIwBJyxUAnn6CuKeHhGhGpfV/5mMoRUVLqye31C1upJo4J0keE4 kCnO089fyNJcahZ2tqt1PcRpA+Nr5+Vs8jBrmtMeys7LUAscsN7Z27pIpGCygswYHv8AXNVYryGL w1o5vY1ZLe9MUildw4DgEDv2/Gun6jFydr2v83pfT1NPq6vpe1zql1jTmkhQXcReYbo1zyw9f0NL a6xp94SLe7jkIYLwe5zgfofyrHt7qyh8WXEDRczQwmAiPhcBs9vl6ioJY0sNEvbtLdVa3v8AzdkI C7lWQcHH+yTS+qU7qOt3a23X/IPYx211tb5nVRSpNGJI2DIehHeqy6rYvfGxW5jN0CR5WeeBn+Vc nea3deHbfRrGKMbTCrzFlJJzwVH459+laV9HBHdavdxRxrcjTg6Nsw2T5mTj8Fz+FEcBZ+9s72++ 2oOhy6vZ7f8ABN+O8tpYGnjuInhXJaVXBUY65PSknvba2fbNOiN5bSYJ52r1NcbBOsnhzV3sywgk 8qKLAKgsURG4+vWqWsagxi0u4PAk06RHHQZKFff+LH6VpDLVKdr9WvPa5UcI5Stf+rXO8/tSx+0e R9oj83y9+wHnbjOfyqIa3prW32gXkPkh9hfdwG9K5WeS3hnuhKjRXX2bz7WXb/rALfawz7cnHtVa 0a2u5xNCmIWkYKpjwCRbEMf++hVRy2ny8zva1xrDRavrsd6bm385YfOTzCu4LuG4j1A64qC21fT7 1pFt7qKUxjc+0/dHrmuMs5I21Swi4Ny8Vm0bFc4UKS/Pbitq2+z2lh4gnKIu2aTJUAEjy1OPzJ/O s6uBjT0u29LfNkSw8Y6a30Nq71SxsEje5uY41l+4WP3vp+YpZNTso45JHuUVI9u9i3C7sbc/XIrm 0CXHhfR1mRXaO7iiYMAcbZNhH5D8qklEC+IZllRXja+jQoVyObcgcdO9KOCpu6bd1e/nZoXsY6p3 uv8ANHR/bbbLDz0yuwEA/wB84X8z0qdmCqWYgKOST2rzlLuWK6hjjVsyWdnt453K6Y4/OtU+JJ59 f1DS5EAg8t0j+XkFVYkn6/0Hrmqq5XKL913W79NCpYSS29fyOqF/aGEy/aIxGEWQsWAARs4Y+xwa jm1WwgaBZbqFTP8A6r5vvfSuTiMcOlTy3AAgFtp7OSM5UPzwPoaztRurSOzhlKFUmguPs42YK7py ykf3flq45ZBytd72/C44YXmfXe34XPR96eZ5e5d+N23POPXFQQX9rdFBBPHKZELrtbOVBwT+fFYT 3Tjx7EgyUNr5Jz2Y7nyOfRKx/A9wZb6OFusFtKuD6F0YH9TWCwCVNzb2Sf33/wAkL6t7jm3sk/vO 0/tOz+3mxFxH9qHPl5+bpn+XNSR3dvLaC6SZDbld/mE4Xb3Oa43ULhV8V3McSE3SXCTbgvRBDg5P pnFa0j+V4DQKBmSzjiA93UL/ADaipgoRULN+9y/iKVC3Lbrb8Tcmu7e2YLNMiEoz/McfKuNx/DIp q31q7ELMhIZUwD0LDIH4g1wWr6i0sGl3AY7G0+VXAPALKUPr/Fj9KcLya28TC3VHKzy2mGA4G1F3 fo3P4VvHK04avXX8HY0WD0vfWz/B2O4/tSyKl/tMZUKznnoqnDH8DUxuoPtItjNH55XcI9w3Y9cV 57eXQtLa3bafLktrqFiOgLO+M8eorp7OGyTxDcyzqHvZLrZC+zkAQqcZ7cMfr+FZ1cBGEea72f4O 3/DmdTDqGuvX8GdBXV2n/HlB/wBc1/lXKV1dp/x5Qf8AXNf5VeT/AG/keTjOhylZOvqWgs8D/l8h /wDQxWtRXlUans6in2O6Ls0zibK8g0e7s5tQ3QqYriNS6N97zs44Hp/nmpIre/i8TJqL/wDHm15L GEI+bldm71wSo/75FdjgNjIpfrXe8w1bUdWmnr0fY3+sat21d0/n2OKtL63m0TTbFGJuba6gE0ZQ jYfMxycY61bt4JRr6uY22rqMpJI6AwDBrqFjRN2xFXcdxwMZPrTqUswS5lGO9+vf5CdfV2W9/wAT n9R0S2stF1E6dbCOaSMt+7zk4wcD8uAKoRS/bdP+1xJ+6k1WJ0bGCV3IMn8ePwrrzyMGgAAYxWdP HSjG0ld3ve/p/kSqzt72ruchfuINWvbuQ7Yre+gllbBO1fJ25wOerCrtxOmoW+rTWzb0l01PLOCN 2fN7GugZFdCrqGU9QRkGnDgVbxyaXu6qy36K3l5DlVUraaq34HF6zlosKCT/AGSx49mSrGr+IIJ9 NAs2820mimgZ1ibiTYNi9OM59K6yjrTWOh7vNC/Lfr3+Q/bLTmW3mUX0ixk1Iag1uhuFGN+OvTB+ oxXLpfQP4autOi3PewTGWSEIdwAnyevB4x3rtqAoGaypYtwXv3dmmte36ChWt8WtrW17HAXUhXTG vTFIIpJLyMZQ5HmD5CR2yQB+NaVnfvp+tSWRhk867MLAFTxGIgGb81Irre1HetpZippxcNNevndF fWE1Zx79fO5xfhy3vrPV7eW8ZSl7au6Ko+4d4fDd/wCM/wDfWO1PuoJZtM0mOONmdtMmQAD+Ixpg fWuxxRxSeYt1Pacuv/Dr9RPENz5rann0ED6rcxkwvElw7RL5i4wwttp4+vSt7SdFsr/QNNa8tlke KL5d2eOvH610YwO1A4FKtmM6iSguW1uvqOeJlJWjpb/gnG30F63iBtSwq2cN5DGVZcM38O7PoC5/ yKz5nlFrqFk6OrWdtOsmRwC8qupH1H8q9C49KMCtIZlypJx22/r7/vKjirWvHa34HGxKSbCwRctb XFzAvPUeUxX9GWo7fVWn0SIpFIsOmm181tp3EqcSD8AB+Zrtvwox7VP9ox6w/Hzbf33JddPdfj53 ZxVhf2+mT6feXh8mCS2nVHCMQxMoYcDJ5HNTufJsTcsjGO21aSWTapJCbmBOPbdmusaNHKlkVivK kjp9KdQ8fG/Ny69dfXy8xOsm72/E4JITDa6NePvR7SKJyMclWkCsMH2at3S7yz/tLUtPd1NxLOzm MIeV2gcnp6966DtR3qKmOVRNOPfr537BOvzppr8fO5z+padp2j6MZI4lhijuYZXIGePNGc+uAT+l YPiNo9ZS4urMebGLWORW2EE4kdTgEZ45rvTyMUvbpRQx7ppNpt33v6f5BTxDi1J6u/cxI7Nl8ZSX YyFayC/U7uf0A/OuUggZX0u9XcDbW8DEr3UyMrD8mr0ajAqqWYuCd1fRL5L/ADHHENdPI4qW5ka5 uLZraZTB5+WK/KwknRlIP05pIdCaZLyxeIMGu59jOMhS0alGJx9P1rtsD0op/wBpSStBW+fUFiWl aKscTLaw6J5DS5EEN1AZJNpYZETAnp64/MVJeKuqX8N7bFnjivLZw2MBkbAzjr1I9O9dlRjij+0H dSa97a9/+AL6w73e5iWtvHc6trkU8YeJ3iDKw4I8paik06103VNFgtYVji82ViBzk+URk+/AroP6 0f0rnWLkn5Wta/la5PtXfytb8LHLapI6eIUtfIZ2mmgljO0kEITvJPsMGqDPJc6PqEYhk8yK1kR/ 3ZA/1jEcnr8ozxXcY70hUEYIyD2raGPUYqPLtbr2LVdJJW2t+ByeqXkGsyQNYP5we1u41wCCW2px g4PcVp+HtV/tO1k2IRBCEjjcggsdo3frWwqKiBUUKo6ADAFOAwTxUVMVCVL2ajttr5+hEqkXHltt tr5nFXdzcaql9DHAUvfLW2lBQgLulwuT6bSTUulQXMN1HaXpWaaPU2kZ1GFYtC7AgYHfn8a7DA7U Vp/aC5HCMbJ/hpYp1/dcUtDn0v7Wy8V3Udy/ly3KQrCChO8/MDg49cU+cH+wdbyMf6//ANBrdxzR 0rF4pXUktdOvb5f5kOps1/Vije6PYahJFJd26SNF93d/I1kaujfbNUwDzpRA9+XrpaKmji5U2r6p f53FGo1vqcLBa3S6V/ZdqWWQX0bxPjKxqUEgJ9QCD1qpLp88mmvZzqPOtrOZd2MglJEf5fwIH416 LgZzRgZzXYs0ad1Hz+Zv9bad7efzOI1S7klUafJAwlihZ4m2H5ozbODz/vnH5elXdZdrew0q4WCR 441ZWES5I3RlR+prquO4o/Cs3j17to6Lz3vuT7dXTtscLp6NaaxZXDqwdIrSB1PBAkRl/wDQgtXb y3uJdM1e1iQ+bPqCoOOACIzk+2K63AoonmPNPn5ddPwdweIbkpW7fgcdbQXMGntbXBV5odViZ3QY BDMrBsds7ulLfzPa6td3Qt3mSG9iZ1RckAwFc/gWFdhxRgULMPebcd9/na/5C9vq21ucGbNjb2Ny IGaS2ezaQAHO0LjGPqRXUPoVk1xNdpCi3UiFfMPYkEZ/XmtSlNRWx86lrafPp2FOvJ7aHDWpS/0m 4tpIZUCJZWkoYFTuWUhh/wCPD8xUN3uOkW27zJJTZzWYCxljvSRQBxnqAevp7131FbLNLSvy9b7+ VuxaxFunW+5xtxa3q+JZdWHy2q3ccZUr8xG0JuBxnHzHj3PpSeGLF7bV7acrjzdOIbjoyuoOfwxX Z4BGKBgYqHmMnTcOXpb5W0E8S3Hlt0t8kZNgqNq+tAoCTJGGJ/iHlLxj8/zrEe5Op+H7PS7Bz9ri eGKYGM4jKgk5yMHBQ/lXY01I1jBKqFycnA7+tZ08Yovma1VreqViI1Unfrpb5HnjaXNLZSWMiKZL e1nUMvRmWVH4444YfnWp9jeTUbO5CZMN4it1yA0Efb/gIrsaK3eaSfTv+O5q8VJ9O/47nn1xbNd6 BcRpGS6QySqe3E7E4/AH8xWyJivjH7KUk3POLhSR8uwQFMj/AIFx+FdRjjGKMc5xUyzC6acdHfr3 t/kKWI5rpre/42/yCurtP+PKD/rmv8q5SurtP+PKD/rmv8q2yf7fyPJxnQpf2Jbf35v++h/hR/Yl t/fm/wC+h/hRRXoewpfyr7kRzS7h/Ylt/fm/76H+FH9iW39+b/vof4UUUewpfyr7kHNLuH9iW39+ b/vof4Uf2Jbf35v++h/hRRR7Cl/KvuQc0u4f2Jbf35v++h/hR/Ylt/fm/wC+h/hRRR7Cl/KvuQc0 u4f2Jbf35v8Avof4Uf2Jbf35v++h/hRRR7Cl/KvuQc0u4f2Jbf35v++h/hR/Ylt/fm/76H+FFFHs KX8q+5BzS7h/Ylt/fm/76H+FH9iW39+b/vof4UUUewpfyr7kHNLuH9iW39+b/vof4Uf2Jbf35v8A vof4UUUewpfyr7kHNLuH9iW39+b/AL6H+FH9iW39+b/vof4UUUewpfyr7kHNLuH9iW39+b/vof4U f2Jbf35v++h/hRRR7Cl/KvuQc0u4f2Jbf35v++h/hR/Ylt/fm/76H+FFFHsKX8q+5BzS7h/Ylt/f m/76H+FH9iW39+b/AL6H+FFFHsKX8q+5BzS7h/Ylt/fm/wC+h/hR/Ylt/fm/76H+FFFHsKX8q+5B zS7h/Ylt/fm/76H+FH9iW39+b/vof4UUUewpfyr7kHNLuH9iW39+b/vof4Uf2Jbf35v++h/hRRR7 Cl/KvuQc0u4f2Jbf35v++h/hR/Ylt/fm/wC+h/hRRR7Cl/KvuQc0u4f2Jbf35v8Avof4Uf2Jbf35 v++h/hRRR7Cl/KvuQc0u4f2Jbf35v++h/hR/Ylt/fm/76H+FFFHsKX8q+5BzS7h/Ylt/fm/76H+F H9iW39+b/vof4UUUewpfyr7kHNLuH9iW39+b/vof4Uf2Jbf35v8Avof4UUUewpfyr7kHNLuH9iW3 9+b/AL6H+FH9iW39+b/vof4UUUewpfyr7kHNLuH9iW39+b/vof4Uf2Jbf35v++h/hRRR7Cl/KvuQ c0u4f2Jbf35v++h/hR/Ylt/fm/76H+FFFHsKX8q+5BzS7h/Ylt/fm/76H+FH9iW39+b/AL6H+FFF HsKX8q+5BzS7h/Ylt/fm/wC+h/hR/Ylt/fm/76H+FFFHsKX8q+5BzS7h/Ylt/fm/76H+FH9iW39+ b/vof4UUUewpfyr7kHNLuH9iW39+b/vof4Uf2Jbf35v++h/hRRR7Cl/KvuQc0u4f2Jbf35v++h/h R/Ylt/fm/wC+h/hRRR7Cl/KvuQc0u4f2Jbf35v8Avof4Uf2Jbf35v++h/hRRR7Cl/KvuQc0u4f2J bf35v++h/hR/Ylt/fm/76H+FFFHsKX8q+5BzS7h/Ylt/fm/76H+FH9iW39+b/vof4UUUewpfyr7g 5pdw/sS2/vzf99D/AAo/sS2/vzf99D/Ciij2FL+Vfcg5pdw/sS2/vzf99D/Cj+xLb+/N/wB9D/Ci ij2FL+Vfcg5pdw/sS2/vzf8AfQ/wo/sS2/vzf99D/Ciil7Cl/KvuQc0u4g0S2P8AHN/30P8ACtOK FY4URc4VQBk0UV0YGnBJ2RjWbdj/2Q== ------_=_NextPart_000_01C2714A.88636D72-- From Mark.Welsh@dot.state.fl.us Thu Oct 17 23:17:54 2002 From: Mark.Welsh@dot.state.fl.us (Mark.Welsh@dot.state.fl.us) Date: Thu, 17 Oct 2002 18:17:54 -0400 Subject: shrug-l: Data Drift in GeoDataBases Message-ID: Hello, I have noticed than when I import a coverage or shape file into a personal geodatabase (GDB), the new feature class in the GDB exhibits spatial drift. While the movement of the data is slight (1/1000 of a meter for our road network), I was shocked to see that when I zoomed in real tight and compared the GDB feature class to the original data, there was an offset. I then decided to use a spatial select where I picked an arc from the GDB and asked ArcMap to select the same arc (contained by) from the coverage and no selection was made. So on the one hand, the problem seems small (0.001 meter difference) but on the other hand, the problem is significant when you try certain types of spatial selections. This problem does not manifest itself when I take the coverage, convert it to a shapefile, and try to select an arc from the shape file by using the coverage as the selector theme (in both ArcMap and ArcView 3.1) so the problem seems to be with the GDB. Also, when I convert the GDB feature class back out to a shapefile or coverage, the drift is now present in the converted data! I have written VB code to bring all sorts of spatial data into a GDB using the IFeatureDataConverter. Its function call includes an IGeometryDefEdit interface which allows you to manually set things like precision, x/y domain extent, and scale. However, when I doe this via programming, or manually via arccatalog import tools, I can only get the data to be a little "closer" to the original, but never exact! I talked to some geodatabase product development team members who (a) could not provide me with an answer to my request "please tell me how to make the GDB data the same (exactly) as the source coverage or shape file and (b) they told me I was too worried about such a minor difference between source and original data. Has anybody else experienced/noticed this problem? If so, have you found a way to fix this via code or otherwise? Do people think that I'm being to picky about converted data being "different" from source? Help....... Thanks! Mark Welsh GIS Applications Coordinator Transportation Statistics Office Florida Department of Transportation (850) 414-4722 mark.welsh@dot.state.fl.us From GregM@mail.co.leon.fl.us Fri Oct 18 13:40:21 2002 From: GregM@mail.co.leon.fl.us (Greg Mauldin) Date: Fri, 18 Oct 2002 08:40:21 -0400 Subject: shrug-l: Data Drift in GeoDataBases Message-ID: Greetings SHRUGlings, Alas, it seems that the age old problem with coordinate creep has been = migrated to the new platform. Well, afterall, the users did tell ESRI that = they wanted all the "features" in ArcInfo migrated to ArcGIS.=20 Greg Greg Mauldin GIS Project Manager Tallahassee-Leon County GIS 850/488-8020 gregm@mail.co.leon.fl.us >>> 10/17/02 06:17PM >>> Hello, I have noticed than when I import a coverage or shape file into a personal geodatabase (GDB), the new feature class in the GDB exhibits spatial = drift. While the movement of the data is slight (1/1000 of a meter for our road network), I was shocked to see that when I zoomed in real tight and compared the GDB feature class to the original data, there was an offset. I then decided to use a spatial select where I picked an arc from the GDB and asked ArcMap to select the same arc (contained by) from the coverage and no selection was made. So on the one hand, the problem seems small (0.001 meter difference) but on the other hand, the problem is significant when you try certain types of spatial selections. This problem does not manifest itself when I take the coverage, convert it to a shapefile, and try to select an arc from the shape file by using the coverage as the selector theme (in both ArcMap and ArcView 3.1) so the problem seems to be with the GDB. Also, when I convert the GDB feature class back out to a shapefile or coverage, the drift is now present in the converted data! I have written VB code to bring all sorts of spatial data into a GDB using the IFeatureDataConverter. Its function call includes an IGeometryDefEdit interface which allows you to manually set things like precision, x/y domain extent, and scale. However, when I doe this via programming, or manually via arccatalog import tools, I can only get the data to be a little "closer" to the original, but never exact! I talked to some geodatabase product development team members who (a) = could not provide me with an answer to my request "please tell me how to make = the GDB data the same (exactly) as the source coverage or shape file and (b) they told me I was too worried about such a minor difference between = source and original data. Has anybody else experienced/noticed this problem? If so, have you found = a way to fix this via code or otherwise? Do people think that I'm being to picky about converted data being "different" from source? Help....... Thanks! Mark Welsh GIS Applications Coordinator Transportation Statistics Office Florida Department of Transportation (850) 414-4722 mark.welsh@dot.state.fl.us=20 _______________________________________________ SHRUG-L mailing list SHRUG-L@lists.dep.state.fl.us=20 http://lists.dep.state.fl.us/mailman/listinfo/shrug-l From Mark.Welsh@dot.state.fl.us Fri Oct 18 13:58:33 2002 From: Mark.Welsh@dot.state.fl.us (Mark.Welsh@dot.state.fl.us) Date: Fri, 18 Oct 2002 08:58:33 -0400 Subject: shrug-l: Data Drift in GeoDataBases Message-ID: The age old problem of data drift shouldn't occur when you are simply copying a dataset from one format to another (or should it?). It doesn't happen when you convert a coverage to shape file (because you can still use the shape file to select features from the coverage and vice versa) why should it happen when you convert either cov or shape to a GDB feature class? I'm just hoping that there's something I'm missing regarding this whole thing, but I can't for the life of me figure out what it is.... Mark From Jim@gpserv.com Fri Oct 18 14:50:34 2002 From: Jim@gpserv.com (Jim Robeson) Date: Fri, 18 Oct 2002 09:50:34 -0400 Subject: shrug-l: Data Drift in GeoDataBases Message-ID: This is a multi-part message in MIME format. ------=_NextPart_000_0006_01C2768B.CDC9A070 Content-Type: text/plain; charset="iso-8859-1" Content-Transfer-Encoding: 7bit Seems there is nothing truly new in the world. I guess these are are migratory features. James M. Robeson Jim@GPServ.com Tallahassee Office Phone (850) 656-6075 FAX (850) 656-1350 Pager (877) 778-1752 Corporate Office Phone (888) 782-1997 FAX (407) 772-2047 Corporate Address GPServ, Inc. 766 Big Tree Drive Suite 104 Longwood, Fl 32750 ------=_NextPart_000_0006_01C2768B.CDC9A070 Content-Type: text/html; charset="iso-8859-1" Content-Transfer-Encoding: quoted-printable
Seems = there is=20 nothing truly new in the world. 
 
 
I = guess these are=20 are migratory features. 
 
 

James M.=20 Robeson     Jim@GPServ.com <mailto:Jim@GPServ.com>

Tallahassee=20 Office          =20

Phone (850) = 656-6075

FAX (850) = 656-1350

Pager (877) = 778-1752

Corporate = Office          &nbs= p;  =20

Phone (888) = 782-1997

FAX (407) = 772-2047

Corporate=20 Address       

GPServ,=20 Inc.

766 Big Tree = Drive

Suite 104

Longwood, Fl = 32750


 
------=_NextPart_000_0006_01C2768B.CDC9A070-- From Rene.Arbogast@dep.state.fl.us Fri Oct 18 15:22:29 2002 From: Rene.Arbogast@dep.state.fl.us (Arbogast, Rene) Date: Fri, 18 Oct 2002 10:22:29 -0400 Subject: shrug-l: Data Drift in GeoDataBases Message-ID: I would guess that there are mathematical calculations in the = conversion process which are 'almost' guaranteed to generate some mathematical = rounding errors. =20 Rene' -----Original Message----- From: Mark.Welsh@dot.state.fl.us [mailto:Mark.Welsh@dot.state.fl.us] Sent: Thursday, October 17, 2002 6:18 PM To: shrug-l@lists.dep.state.fl.us Subject: shrug-l: Data Drift in GeoDataBases Hello, I have noticed than when I import a coverage or shape file into a = personal geodatabase (GDB), the new feature class in the GDB exhibits spatial = drift. While the movement of the data is slight (1/1000 of a meter for our road network), I was shocked to see that when I zoomed in real tight and compared the GDB feature class to the original data, there was an = offset. I then decided to use a spatial select where I picked an arc from the = GDB and asked ArcMap to select the same arc (contained by) from the coverage and no selection was made. So on the one hand, the problem seems small (0.001 meter difference) but on the other hand, the problem is = significant when you try certain types of spatial selections. This problem does not manifest itself when I take the coverage, convert it to a shapefile, and try to select an arc from the shape file by using the coverage as the selector theme (in both ArcMap and ArcView 3.1) so the problem seems to = be with the GDB. Also, when I convert the GDB feature class back out to a shapefile or coverage, the drift is now present in the converted data! I have written VB code to bring all sorts of spatial data into a GDB = using the IFeatureDataConverter. Its function call includes an = IGeometryDefEdit interface which allows you to manually set things like precision, x/y domain extent, and scale. However, when I doe this via programming, or manually via arccatalog import tools, I can only get the data to be a little "closer" to the original, but never exact! I talked to some geodatabase product development team members who (a) = could not provide me with an answer to my request "please tell me how to make = the GDB data the same (exactly) as the source coverage or shape file and (b) they told me I was too worried about such a minor difference between = source and original data. Has anybody else experienced/noticed this problem? If so, have you = found a way to fix this via code or otherwise? Do people think that I'm being = to picky about converted data being "different" from source? Help....... Thanks! Mark Welsh GIS Applications Coordinator Transportation Statistics Office Florida Department of Transportation (850) 414-4722 mark.welsh@dot.state.fl.us _______________________________________________ SHRUG-L mailing list SHRUG-L@lists.dep.state.fl.us http://lists.dep.state.fl.us/mailman/listinfo/shrug-l From johnsonj@talgov.com Fri Oct 18 18:21:59 2002 From: johnsonj@talgov.com (Johnson, Jay) Date: Fri, 18 Oct 2002 13:21:59 -0400 Subject: shrug-l: Data Drift in GeoDataBases Message-ID: <614E33D8AF10704AAB61E151813351C801CBCA4A@cotexchange3.ci.tlh.fl.us> I just converted a coverage of roads to a shapefile using ArcGIS Toolbox and found the same coordinate drift problem, so the issue apparently is NOT restricted to geodatabases. The same coverage to shapefile conversion done in ArcView 3.2 does not exhibit coordinate creep. Jay Johnson GIS Project Manager City of Tallahassee (850) 891-8099 -----Original Message----- From: Mark.Welsh@dot.state.fl.us [mailto:Mark.Welsh@dot.state.fl.us] Sent: Friday, October 18, 2002 8:59 AM To: shrug-l@lists.dep.state.fl.us Subject: Re: shrug-l: Data Drift in GeoDataBases The age old problem of data drift shouldn't occur when you are simply copying a dataset from one format to another (or should it?). It doesn't happen when you convert a coverage to shape file (because you can still use the shape file to select features from the coverage and vice versa) why should it happen when you convert either cov or shape to a GDB feature class? I'm just hoping that there's something I'm missing regarding this whole thing, but I can't for the life of me figure out what it is.... Mark _______________________________________________ SHRUG-L mailing list SHRUG-L@lists.dep.state.fl.us http://lists.dep.state.fl.us/mailman/listinfo/shrug-l From Linc.Clay@dep.state.fl.us Fri Oct 18 18:42:27 2002 From: Linc.Clay@dep.state.fl.us (Clay, Linc) Date: Fri, 18 Oct 2002 13:42:27 -0400 Subject: shrug-l: Data Drift in GeoDataBases Message-ID: <3BAB5228A8974041A2D238F96394FA2E010464FD@TLHEXSMB1.floridadep.net> We have provided Mark some direct responses based on our experience. = For the good of the order since this is an interesting topic, here are those responses. DEP's general response -- Mark, My guess is that the coordinate creep is a function of the data type or precision (or scale more correctly) in which the coordinates are stored. = The GDB may use a different data type, so you may be seeing "rounding" or truncating error in essence when moving from one form to another. This = would also explain why the creep was retained when you went back to the native form. -Linc DEP's ArcSDE specific response -- Mark, My answer assumes that your GeoDataBase is ArcSDE, but is probably true = for personal GDBs as well if they use the same concepts for storage and = access, which I believe they do. If I understand the problem correctly . . . ArcSDE will always be offset from the original data source at some level = of precision. Vertices in many of our layers are 2mm (.002) 'off' from the source data. This is inherent in the nature of the way ArcSDE works. = ArcSDE stores coordinates as whole integers (faster access through easier computation). These integers are created by a precision scale factor = that you supply to ArcSDE when loading data (we normally use 2000). ArcSDE = would take a number 652123.1524786 and store it as 1304246304 and then, when retrieving the data, divide it by the factor (2000 for this example) to = get 652123.152 for 'proper' display. Obviously, 652123.1524786 and = 652123.152 are not coincident. And if the original ten-thousandths numeral had = been 5 or greater, the coordinate pair that this number helped construct might = be sitting even further away when it comes back out of the database. In other words, ArcSDE is (in effect) snapping coordinates/vertices to a grid. That grid might be a decimeter grid, a millimeter grid, a = nanometer grid, etc, depending on the precision scale factor used when a layer is created. This phenomenon is not normally going to be dependent on the precision of the data source in terms of seeing a difference between a = single precision or double precision ARC/INFO coverage. I would guess the difference between the two is usually beyond the precision level that = ArcSDE is requested to store. The drift is definitely going to be present in shapefiles and coverages created from ArcSDE layers because as far as ArcSDE is concerned, the = number is 652123.152, not 652123.1524786, and ArcSDE has no knowledge of the original. When determining the precision factor for a layer, ESRI suggests using = only as much precision as you need. For instance, we break this rule when we = use the precision factor of 2000 for data whose source is 1:2,000,000. A = factor of only 1 or 10 might suffice, but of course it wouldn't 'look' good if = users zoomed in to 1:1 scale or greater in their view and compared that layer = to the source data. Their reasoning is that greater precision increases = the database size and their assumption is that you never want more data than = you need to get the job done because it involves greater cost in terms of = disk space and computation time. -Eric Brockwell Linc Clay Bureau of Information Systems/GIS 2600 Blair Stone Rd., MS 6520 Tallahassee, FL 32399-2400 Voice: 850-245-8295 / SC 205-8295 Fax: 850-245-8263 / SC 205-8263 E-mail: linc.clay@dep.state.fl.us From kcraig@taylorengineering.com Fri Oct 18 19:04:46 2002 From: kcraig@taylorengineering.com (Kenneth Craig) Date: Fri, 18 Oct 2002 14:04:46 -0400 Subject: shrug-l: GIS Programmer Position Message-ID: <001001c276d0$d89f5130$e801a8c0@TAYLOR1.ENGINEERING.COM> GIS PROGRAMMER Taylor Engineering (www.taylorengineering.com) has an opening for a GIS programmer with a minimum of 3 years experience programming ArcObjects, VB, VBA. Experience with other programming languages a plus. The successful candidate will work closely with our engineers developing primarily in-house software to improve efficiency. Must have excellent working knowledge of ArcGIS software, COM programming, spatial analysis techniques, 3-D Analyst, and Spatial Analyst. Knowledge of and experience with geodatabases, ArcSDE, and ArcIMS a big plus. Must have strong science and math fundamentals and personal communication skills. Excellent benefits. EOE M/F. Respond with letter and resume to the address below. Taylor Engineering, Inc. 9000 Cypress Green Drive Jacksonville, Florida 32256 Phone: (904) 731-7040 Fax: (904) 731-9847 sschropp@taylorengineering.com From CobleJ@mail.co.leon.fl.us Fri Oct 18 21:34:29 2002 From: CobleJ@mail.co.leon.fl.us (Jacob Coble) Date: Fri, 18 Oct 2002 16:34:29 -0400 Subject: shrug-l: Data Drift in GeoDataBases Message-ID: Well, if whole continents can drift, why not GeoDataBases? Seriously, someone on the ESRI SDE User Forum suggested that this might be = because SDE is 32 bit instead of 64 bit-so there's a limit right there. Jacob From Mark.Welsh@dot.state.fl.us Mon Oct 21 14:34:09 2002 From: Mark.Welsh@dot.state.fl.us (Mark.Welsh@dot.state.fl.us) Date: Mon, 21 Oct 2002 09:34:09 -0400 Subject: shrug-l: Data Drift in GeoDataBases Message-ID: Shrugians, Thanks to everyone who replied to my initial query regarding GDBs. In particular, Eric Brockwell provided a very good description of what's going on behind the scenes in GDB land. Thanks to Linc Clay for posting FDEPs replies on this. Also, ESRI-Charlotte got in the mix Friday afternoon. Since I was out Friday pm, I didn't have a chance to summarize what I've discovered, but here's some thoughts so far: (I apologize for the long-winded discussion, I guess it makes up for my previous lack of postings.....). (1) First, I'm not hung up on the fact that the data are "off" by such a small amount. Several suggestions I received suggested setting the precision parameter (FDEP, ESRI) to a higher value in order to make the GDB data "better". Yes, I tried this (before posting to SHRUG) and found that you can change the degree of difference, but that there is an upper limit to how high you can set the precision, especially for data that cover large geographic extents (like statewide data or regional data). I'm still waiting to find a way to make the GDB data the same as the source data. I guess the main concern that I have is that no matter how high I set the precision (up to the limit) the data are no longer the same as the original. The source data are accurate to 4 decimal places and the GDB data, in effect, lose some of this information. Spatial joins (or select by contains) back to the source data or other data built from the source data are not possible. This creates a disconnect, between GDB data and source data. Also, the argument that the data change is so small is kind of like telling people that the bank will no longer keep track of the cents portion of their accounts since these pesky little coins don't really matter.... (2) Eric Brockwell provided some good leads and I was able to track down a geodatabase training book from ESRI. The following is my attempt to interpret this information. In essence, to get data into the GDB, the software needs to translate your map units into what ESRI terms "Geodatabase units". The GDB unit conditions the spatial precision of the data. If your data are in feet, and you want precision tracking in the GDB to 1/8 of an inch, you need to be able to divide each foot into 96 GDB units (this will give the GDB the ability to keep data to 1/8 inch). The precision setting in this case would be 96. So far so good. However, the next phase requires you to determine if the desired scale will work in the GDB given the extent of the data you are trying to import. And here's where it all breaks down, I think. There is a limit of 2.1 Billion GDB units (in X or Y) that the database can maintain. Therefore, if the largest extent of your data (in X or Y terms) times the GDB precision exceeds 2.1 Billion, then the precision is too high. This maybe ties into a point that Jacob made about 32 bit architecture. For a statewide data source (like ours) in meters originally accurate to the ten thousandth place, I would need to divide 1 meter by my precision desired (0.0001) which yields a precision factor of 10,000. However, if I try to set this precision level and import the data, the import fails. And no wonder since the extent of our data is approximately 733,000 meters north-south. If I multiply this value by 10,000 I exceed the 2.1 Billion limit along the Y axis by 5 billion. I want to divide a meter into 10,000 units to capture the precision of the source data, but in reality, I can only divide a meter into 1,500 units and successfully import the data into a GDB. Since 1,500 is smaller than 10,000 by a factor of 10 (approx.), it makes sense that the imported data are off by 0.001 meters approx. The key here is that there are limits in the GDB as to how precise the data can be stored and these are conditioned by two factors (the 2.1 Billion limit and the geographic extent of the original data). Unless I'm totally missing something, it makes it impossible for us to have our GDB match our original coverage. Both people I've worked with at ESRI have been able to suggest how to make the offset less, but not make it disappear. (3) Does this matter to anyone? For many purposes, its a non-issue, but I would like to have the option to keep my data the same in the GDB as it was originally. I'm curious how others feel about this. Are there any other unforeseen consequences? Thanks to everyone who replied. I'm going to do some more data exploration/experimentation and I'll post any new things I may discover. Mark From WilliamPollock@WilsonMiller.com Mon Oct 21 14:49:44 2002 From: WilliamPollock@WilsonMiller.com (William Pollock) Date: Mon, 21 Oct 2002 09:49:44 -0400 Subject: shrug-l: Data Drift in GeoDataBases Message-ID: <31D585089AA6D411A43E00B0D06847CF73CA33@TALQUIN> Mark - If there is a 2.1 billion GDB unit limitation which is exceeded considering the Y-axis of your dataset, could you not "break" your dataset into two or more smaller pieces? Ciao, bill -----Original Message----- From: Mark.Welsh@dot.state.fl.us [mailto:Mark.Welsh@dot.state.fl.us] Sent: Monday, October 21, 2002 9:34 AM To: shrug-l@lists.dep.state.fl.us Subject: RE: shrug-l: Data Drift in GeoDataBases Shrugians, Thanks to everyone who replied to my initial query regarding GDBs. In particular, Eric Brockwell provided a very good description of what's going on behind the scenes in GDB land. Thanks to Linc Clay for posting FDEPs replies on this. Also, ESRI-Charlotte got in the mix Friday afternoon. Since I was out Friday pm, I didn't have a chance to summarize what I've discovered, but here's some thoughts so far: (I apologize for the long-winded discussion, I guess it makes up for my previous lack of postings.....). (1) First, I'm not hung up on the fact that the data are "off" by such a small amount. Several suggestions I received suggested setting the precision parameter (FDEP, ESRI) to a higher value in order to make the GDB data "better". Yes, I tried this (before posting to SHRUG) and found that you can change the degree of difference, but that there is an upper limit to how high you can set the precision, especially for data that cover large geographic extents (like statewide data or regional data). I'm still waiting to find a way to make the GDB data the same as the source data. I guess the main concern that I have is that no matter how high I set the precision (up to the limit) the data are no longer the same as the original. The source data are accurate to 4 decimal places and the GDB data, in effect, lose some of this information. Spatial joins (or select by contains) back to the source data or other data built from the source data are not possible. This creates a disconnect, between GDB data and source data. Also, the argument that the data change is so small is kind of like telling people that the bank will no longer keep track of the cents portion of their accounts since these pesky little coins don't really matter.... (2) Eric Brockwell provided some good leads and I was able to track down a geodatabase training book from ESRI. The following is my attempt to interpret this information. In essence, to get data into the GDB, the software needs to translate your map units into what ESRI terms "Geodatabase units". The GDB unit conditions the spatial precision of the data. If your data are in feet, and you want precision tracking in the GDB to 1/8 of an inch, you need to be able to divide each foot into 96 GDB units (this will give the GDB the ability to keep data to 1/8 inch). The precision setting in this case would be 96. So far so good. However, the next phase requires you to determine if the desired scale will work in the GDB given the extent of the data you are trying to import. And here's where it all breaks down, I think. There is a limit of 2.1 Billion GDB units (in X or Y) that the database can maintain. Therefore, if the largest extent of your data (in X or Y terms) times the GDB precision exceeds 2.1 Billion, then the precision is too high. This maybe ties into a point that Jacob made about 32 bit architecture. For a statewide data source (like ours) in meters originally accurate to the ten thousandth place, I would need to divide 1 meter by my precision desired (0.0001) which yields a precision factor of 10,000. However, if I try to set this precision level and import the data, the import fails. And no wonder since the extent of our data is approximately 733,000 meters north-south. If I multiply this value by 10,000 I exceed the 2.1 Billion limit along the Y axis by 5 billion. I want to divide a meter into 10,000 units to capture the precision of the source data, but in reality, I can only divide a meter into 1,500 units and successfully import the data into a GDB. Since 1,500 is smaller than 10,000 by a factor of 10 (approx.), it makes sense that the imported data are off by 0.001 meters approx. The key here is that there are limits in the GDB as to how precise the data can be stored and these are conditioned by two factors (the 2.1 Billion limit and the geographic extent of the original data). Unless I'm totally missing something, it makes it impossible for us to have our GDB match our original coverage. Both people I've worked with at ESRI have been able to suggest how to make the offset less, but not make it disappear. (3) Does this matter to anyone? For many purposes, its a non-issue, but I would like to have the option to keep my data the same in the GDB as it was originally. I'm curious how others feel about this. Are there any other unforeseen consequences? Thanks to everyone who replied. I'm going to do some more data exploration/experimentation and I'll post any new things I may discover. Mark _______________________________________________ SHRUG-L mailing list SHRUG-L@lists.dep.state.fl.us http://lists.dep.state.fl.us/mailman/listinfo/shrug-l From johnsonj@talgov.com Mon Oct 21 14:55:42 2002 From: johnsonj@talgov.com (Johnson, Jay) Date: Mon, 21 Oct 2002 09:55:42 -0400 Subject: shrug-l: Data Drift in GeoDataBases Message-ID: <614E33D8AF10704AAB61E151813351C801CBCA52@cotexchange3.ci.tlh.fl.us> Mark, Thanks for the update - interesting stuff! It looks like the real fly in the ointment here is storing data with a precision of .0001 meters. What is the true precision of this data? We are probably all guilty of carrying excess decimals in our data and it ALMOST never creates a problem... The crux of the issue is maintaining exact coordinate matches in the source and converted data. Would it be possible to reduce the precision of the source data to reflect its "true" precision prior to converting to a GDB? Then the precision would likely be within the capability of the GDB grid to duplicate. Just a thought. Jay Johnson GIS Project Manager City of Tallahassee (850) 891-8099 -----Original Message----- From: Mark.Welsh@dot.state.fl.us [mailto:Mark.Welsh@dot.state.fl.us] Sent: Monday, October 21, 2002 9:34 AM To: shrug-l@lists.dep.state.fl.us Subject: RE: shrug-l: Data Drift in GeoDataBases Shrugians, Thanks to everyone who replied to my initial query regarding GDBs. In particular, Eric Brockwell provided a very good description of what's going on behind the scenes in GDB land. Thanks to Linc Clay for posting FDEPs replies on this. Also, ESRI-Charlotte got in the mix Friday afternoon. Since I was out Friday pm, I didn't have a chance to summarize what I've discovered, but here's some thoughts so far: (I apologize for the long-winded discussion, I guess it makes up for my previous lack of postings.....). (1) First, I'm not hung up on the fact that the data are "off" by such a small amount. Several suggestions I received suggested setting the precision parameter (FDEP, ESRI) to a higher value in order to make the GDB data "better". Yes, I tried this (before posting to SHRUG) and found that you can change the degree of difference, but that there is an upper limit to how high you can set the precision, especially for data that cover large geographic extents (like statewide data or regional data). I'm still waiting to find a way to make the GDB data the same as the source data. I guess the main concern that I have is that no matter how high I set the precision (up to the limit) the data are no longer the same as the original. The source data are accurate to 4 decimal places and the GDB data, in effect, lose some of this information. Spatial joins (or select by contains) back to the source data or other data built from the source data are not possible. This creates a disconnect, between GDB data and source data. Also, the argument that the data change is so small is kind of like telling people that the bank will no longer keep track of the cents portion of their accounts since these pesky little coins don't really matter.... (2) Eric Brockwell provided some good leads and I was able to track down a geodatabase training book from ESRI. The following is my attempt to interpret this information. In essence, to get data into the GDB, the software needs to translate your map units into what ESRI terms "Geodatabase units". The GDB unit conditions the spatial precision of the data. If your data are in feet, and you want precision tracking in the GDB to 1/8 of an inch, you need to be able to divide each foot into 96 GDB units (this will give the GDB the ability to keep data to 1/8 inch). The precision setting in this case would be 96. So far so good. However, the next phase requires you to determine if the desired scale will work in the GDB given the extent of the data you are trying to import. And here's where it all breaks down, I think. There is a limit of 2.1 Billion GDB units (in X or Y) that the database can maintain. Therefore, if the largest extent of your data (in X or Y terms) times the GDB precision exceeds 2.1 Billion, then the precision is too high. This maybe ties into a point that Jacob made about 32 bit architecture. For a statewide data source (like ours) in meters originally accurate to the ten thousandth place, I would need to divide 1 meter by my precision desired (0.0001) which yields a precision factor of 10,000. However, if I try to set this precision level and import the data, the import fails. And no wonder since the extent of our data is approximately 733,000 meters north-south. If I multiply this value by 10,000 I exceed the 2.1 Billion limit along the Y axis by 5 billion. I want to divide a meter into 10,000 units to capture the precision of the source data, but in reality, I can only divide a meter into 1,500 units and successfully import the data into a GDB. Since 1,500 is smaller than 10,000 by a factor of 10 (approx.), it makes sense that the imported data are off by 0.001 meters approx. The key here is that there are limits in the GDB as to how precise the data can be stored and these are conditioned by two factors (the 2.1 Billion limit and the geographic extent of the original data). Unless I'm totally missing something, it makes it impossible for us to have our GDB match our original coverage. Both people I've worked with at ESRI have been able to suggest how to make the offset less, but not make it disappear. (3) Does this matter to anyone? For many purposes, its a non-issue, but I would like to have the option to keep my data the same in the GDB as it was originally. I'm curious how others feel about this. Are there any other unforeseen consequences? Thanks to everyone who replied. I'm going to do some more data exploration/experimentation and I'll post any new things I may discover. Mark _______________________________________________ SHRUG-L mailing list SHRUG-L@lists.dep.state.fl.us http://lists.dep.state.fl.us/mailman/listinfo/shrug-l From PenceP@talgov.com Thu Oct 24 13:41:31 2002 From: PenceP@talgov.com (Pence, Patrick) Date: Thu, 24 Oct 2002 08:41:31 -0400 Subject: shrug-l: 2002 SHRUG GIS Workshop - Nov. 12 - 15 **REMINDER** Message-ID: <614E33D8AF10704AAB61E151813351C80289AF98@cotexchange3.ci.tlh.fl.us> This message is in MIME format. Since your mail reader does not understand this format, some or all of this message may not be legible. ------_=_NextPart_000_01C27B59.EF7EA85A Content-Type: multipart/alternative; boundary="----_=_NextPart_001_01C27B59.EF7EA85A" ------_=_NextPart_001_01C27B59.EF7EA85A Content-Type: text/plain; charset="iso-8859-1" We are now 21 days away from the Seven Hills Regional Usergroup for GIS (SHRUG) 2002 GIS Workshop! If you have not made arrangements to attend, or if you have not checked out the informational updates to the SHRUG website, its time to do so now before time runs out! The deadline for presentation abstracts passed on October 15th, but poster submittals are still being accepted for this year's poster contest. Because the Workshop Program has gone to press, any further poster entries will be listed separately. The price of Workshop registration is now $75. You may still register on-line before the conference via the SHRUG website, or you can register at the Workshop starting at 8:00am on November 14th. Registration tables will be set up in the lower level of the Tallahassee-Leon County Civic Center. Two breakfasts, a lunch, snacks, and an ice cream social are all included in the registration price for this Workshop (in addition to a Workshop t-shirt). The SHRUG website ( http://www.shrug-gis.info) contains information regarding Hotels, Workshop Agenda & Schedules, Civic Center location, and on-line Registration information for both the Workshop and the pre-Workshop ESRI Training Sessions (Nov 12-13). This year's Keynote Speaker is Ken Haddad, Executive Director of the Florida Fish & Wildlife Conservation Commission (FFWCC). Plan the week of November 12-15th on your calendar around attending this exciting regional gathering of GIS professionals. Please pass this message along to other members of your GIS workgroup who would benefit from attending this conference. We hope to see you there! Sincerely, The 2002 SHRUG Workshop Planning Committee Current Presentation Tracks: Digital Terrain Modeling Mapping Water Quality GIS Data Access Communities Online with ArcIMS Remote Sensing Routing Applications for Community Services Local Government GIS State & Federal Government GIS Enterprise GIS Photogrammetry GIS Data Models GIS Data Standards GIS Vendors Transportation Applications GIS in Public Safety GIS in Archaeology Current Sponsors/Vendors: 3001, Inc GIS Solutions CADD Centers of Florida Jones, Edmunds, & Assoc. EarthData Intl. Merrick & Co. ERDAS PBS&J ESRI Southeast Digital Mapping FDOT Surdex Corp. FLURISA Tallahassee-Leon Co. GIS Geographic Data Technology URS Corp. Geographic Information Services Wilson-Miller, Inc. Geographic Technologies Group ------_=_NextPart_001_01C27B59.EF7EA85A Content-Type: text/html; charset="iso-8859-1" Content-Transfer-Encoding: quoted-printable
    
           &= nbsp;           &= nbsp;           &= nbsp;    3D""         &nb= sp;           &nb= sp;           &nb= sp;           &nb= sp; 
          &nb= sp;           &nb= sp;           &nb= sp;           &nb= sp;           &nb= sp;           &nb= sp;           &nb= sp;           &nb= sp;    

We are now 21 days away from the Seven = Hills=20 Regional Usergroup for GIS (SHRUG) 2002 GIS Workshop!

If you = have not=20 made arrangements to attend, or if you have not checked out the = informational=20 updates to the SHRUG website, its time to do so now before time runs=20 out!

The deadline for presentation abstracts passed = on October=20 15th, but poster submittals are still being accepted for this = year's poster=20 contest.  Because the Workshop Program has gone to press, any=20 further poster entries will be listed separately.   =

The price of Workshop registration is=20 now $75.  You may still register on-line before the = conference via the=20 SHRUG website, or you can register at the Workshop starting = at 8:00am=20 on November 14th.  Registration tables will be set up in the lower = level of=20 the Tallahassee-Leon County Civic Center.  Two breakfasts, a lunch, snacks, and an = ice cream=20 social are all included in the registration price for this = Workshop (in addition = to a=20 Workshop t-shirt)
.

The = SHRUG=20 website (http://www.shrug-gis.info) = contains=20 information regarding Hotels, Workshop Agenda & Schedules, Civic = Center=20 location, and on-line Registration information for both the Workshop = and the=20 pre-Workshop ESRI Training Sessions (Nov 12-13).  This year's = Keynote=20 Speaker is Ken Haddad, Executive Director of the Florida Fish & = Wildlife=20 Conservation Commission (FFWCC).

Plan the week of November = 12-15th on=20 your calendar around attending this exciting regional gathering of GIS=20 professionals.

Please pass this message along to other members = of your=20 GIS workgroup who would benefit from attending this = conference.   We=20 hope to see you there!

Sincerely,

The 2002 SHRUG Workshop = Planning=20 Committee
 

Current Presentation Tracks: 

Digital Terrain=20 Modeling        Mapping Water=20 Quality
GIS Data=20 Access           =         =20 Communities Online with ArcIMS
Remote=20 Sensing           = ;         =20 Routing Applications for Community Services
Local Government=20 GIS           Sta= te &=20 Federal Government GIS
Enterprise=20 GIS           &nb= sp;           =20 Photogrammetry
GIS Data=20 Models           =         =20 GIS Data Standards
GIS=20 Vendors           = ;            = ;   =20 Transportation Applications
GIS in Public=20 Safety           =    =20 GIS in Archaeology
 
 
Current Sponsors/Vendors:
 
3001,=20 Inc           &nb= sp;           &nb= sp;           &nb= sp;           =20 GIS Solutions
CADD Centers of=20 Florida           = ;        =20 Jones, Edmunds, & Assoc.
EarthData=20 Intl.           &= nbsp;           &= nbsp;           &= nbsp;   =20 Merrick & Co.
ERDAS          &n= bsp;           &n= bsp;           &n= bsp;           &n= bsp;    PBS&J
ESRI          &nb= sp;           &nb= sp;           &nb= sp;           &nb= sp;        =20 Southeast Digital Mapping
FDOT          &nb= sp;           &nb= sp;           &nb= sp;           &nb= sp;       Surdex=20 Corp.
FLURISA          =             =             =             =  =20 Tallahassee-Leon Co. GIS
Geographic Data=20 Technology          &n= bsp;   URS=20 Corp.
Geographic Information = Services       =20 Wilson-Miller, Inc.
Geographic Technologies = Group
------_=_NextPart_001_01C27B59.EF7EA85A-- ------_=_NextPart_000_01C27B59.EF7EA85A Content-Type: image/jpeg; name="WorkshopLogo.jpg" Content-Transfer-Encoding: base64 Content-Disposition: attachment; filename="WorkshopLogo.jpg" Content-ID: <161490817@23102002-25c1> /9j/4AAQSkZJRgABAQEBLAEsAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0a HBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIy MjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAIkAioDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD0n7Zc /wDPxN/32aPtlz/z8Tf99moaK/JfrNb+d/ez3/Zw7GP4s8ZL4U0V76eaV5WOyCLzCDI/+Hqa8G1n 4neLtbZhLrVzbwtkeTayNEmDnIODkjnuTXR/G6aZte02BgfIW2Loc8bi5Dfoq15Z2r9AyPCqOGjW k7ylrq729DysTO83FbIsXF3c3kglubiWdwNoaVyxx6ZP1NW4df1m3ZGh1a+jaMgoUuXBUjpjB4xX ofgD4baV4g0OPVtQupnEjOogiIULgkfMcEk9+Mdq6vUPg/4ZuwTa/arJuwjl3qPwfJ/Wrr57g6NZ 0Z3utG7aExwtSUeZGt8Mte1PVPBFtNeX11POkkiNLLOzu/zEjJJz3x+Arn/jTqV/b6PphhvrmMmd gSkzDPy/Wun8F+GJPCWjS6a179rU3DSxvsKYUqoxjJxyCeveuM+N8iDTNIiJ/eNLIwGOoCgH+Yr5 7CYj2ubp05NxbbW+1m9jsqQ5aGq1PI/7d1j/AKCt9/4EP/jXrPwTvdQurjWZ59QupfLWFArzMR8x c56/7NeLd69s+B8QGk6rNswzTopb1AUnH6n86+jzuo6eBm4uz0/NHHhleqrnrn2u5/5+Jv8Avs1k +Kb66TwjrTLczBhYzkESHIPltWhXPeO5Hi8DawyMVJt2XI9DwR+RNfB4OvVliIJyerXV9z1Jwgot 2Pm/+3dYz/yFb7/wIf8AxrqvhzqWqXvj3SoX1S82+Y7kGdiDtRmxjPfFcJ3ru/hJEJPH9q7E5iil dceuwrz+DGv0fHz5MLUkt+V/kePSV6kV5n0b9ruf+fib/vs18kHXdXyf+Jrff+BD/wCNfVs8yW9v JO+dkal2x6AZNfIR6mvnuF5znGq5tvbf5nXjYpctvMv/ANu6x/0Fb7/wIf8Axo/t3WP+grff+BD/ AONafgrRrbxD4rstLvGlSCfzNzQkBhtjZhjII6gdq9Xf4LeHdrbL3UlbHylpIyAfcbOa9zGZphsJ NQrPVq+39djmp4edRXieQWfi3xHp7lrTX9TgJILCO6cBsdMjOD+NdvoPxs8RWUyprEz6hbEgFs+X Io9QRgH6Ec+orD8d+BX8HS2zx3X2mzuMhGZcOGAGQR078fj+PE1qvYY2iprWL67P/NE+9TlZ7n1/ Yaz/AGnYQXtpeSS286B0cOeQfx4PYjtXifxg1y/HjKKK3v7uPyrRFYLMwBO52yMH0Irr/g7LLJ4H KyKQqXcixk55XCnP5lulec/FyRH8fXCqQSkESt7HbnH5EV83lUJUs0nR5m1FPr5o7a9nRUrbnJ/2 7rH/AEFb7/wIf/GvpH4eT3aeAtK8y9mldo2csztn5nZsde2cV8vDrX1N4NgW38FaKiEkGzifn1ZQ x/U12cTVJQw0eV2u/wBGZYKKc3c6L7Xc/wDPzN/32a8X+NGsX0GuabFDqNzGwtizKkzDgsQD19jX sVeEfGz/AJHCz/68E/8ARkleJw7VqTxvvSb0fU6cXGMaeiOF/t3V/wDoK33/AIEP/jXvPwhur1vB LSzX1xM011I2WkYlQAq4zn2z+NfOxr6O+FUKRfDzT3XOZWldvr5jL/JRXv8AEVWVPB+67Xa/U5cH FOpr2O5+13P/AD8Tf99mvPvGnxbXw7cSadp7td36cSFpW8uJvQ45Y+oBGPXPFZ/xV8aTaLbR6Ppk wS8uVLTyKfmij6AA9ieefT614VznrzXn5Llc6sViMRJ2eyu9fNmuJrRi+SC1Os1T4j+MNVMi3HiG +WN8gxwSmJcHIxhcZGD3/Gucur+7vQv2u7muNmdvmyFtueuM/QVqeGvCmq+Kb3yNPhBRSBLM/CRg +p/oOa9PsPglpyIDqOqXMr7eRAqxgH6sGyOte9iMxwmD9ycrPsjlhQqVNUjxy21G9s1ZbW8uIFY5 IilZQT74Natr418U2IjS28R6rFGnKxreSbB3+7nHf0r2OT4PeFniKAXqHj51nG79QR+lY+o/BG0Y Z0zVp42/u3KBwfXlcY/I1yQ4gwE9HJr1X+VzR4Sqj1LS9RurnR7Kc3kshlgjfeJCd2VBznNW/tlz /wA/E3/fZrL0Wzk03QtOsZWVpLe2ihcoSVLKoBxkdOKvdq+Fr4ip7SXLN2v3Z6cacbK6Jvtlz/z8 Tf8AfZo+2XP/AD8Tf99moaKy+s1v5397K9nDsTfbLn/n4m/77NH2y5/5+Jv++zUNFH1mt/O/vYez h2Jvtlz/AM/E3/fZo+2XP/PxN/32ahoo+s1v5397D2cOxN9suf8An4m/77NH2y5/5+Jv++zUNFH1 mt/O/vYezh2Jvtlz/wA/E3/fZo+2XP8Az8Tf99moaKPrNb+d/ew9nDsTfbLn/n4m/wC+zR9suf8A n4m/77NQ0UfWa387+9h7OHYm+2XP/PxN/wB9mj7Zc/8APxN/32ahoo+s1v5397D2cOxN9suf+fib /vs0fbLn/n4m/wC+zUNFH1mt/O/vYezh2Jvtlz/z8Tf99mj7Zc/8/E3/AH2ahoo+s1v5397D2cOx N9suf+fib/vs0fbLn/n4m/77NQ0UfWa387+9h7OHYm+2XP8Az8Tf99mj7Zc/8/E3/fZqGij6zW/n f3sPZw7E32y5/wCfib/vs0fbLn/n4m/77NQ0UfWa387+9h7OHYm+2XP/AD8Tf99mj7Zc/wDPxN/3 2ahoo+s1v5397D2cOxN9suf+fib/AL7NH2y5/wCfib/vs1DRR9Zrfzv72Hs4dib7Zc/8/E3/AH2a Ptlz/wA/E3/fZqGij6zW/nf3sPZw7E32y5/5+Jv++zR9suf+fib/AL7NQ0UfWa387+9h7OHYm+13 P/PxN/32a6a1d2tISSxJRSSfpXJ11dpn7FB/1zX+VexlNacnO8n0OPFxUbWRylFFFfPnecV8SfBz +KNGWWzjU6jaktFk48xD95P0BGe/pk188TRSQyvFKjJIjFWVhggjqCPWvryvPPiH8PE1+J9U0tFT VEHzoOBcAdj/ALXoe/Q+31mRZyqVsNX+Ho+3r5HDisNze/Hc8u8FeNr3wjf/ACgz2Mh/f25bGf8A aX0b+fQ9sfQWi65p3iDTY77TbhZYm+8ufmjb+6w7H/PQ18qzQy20zRTRvHIhwyOpBU+hBrW8OeJd R8M6gl3YTFc48yJuUlUdmH589R2r2s1yenjV7WnpP8H6/wCZzUMQ6fuy2PqavHvjp93Qf+3j/wBp 16lomqw67otnqcGBHcxh9oOdrdGXPscj8K8s+OUiF9DiDDeonYj0B8sA/oa+YyOnKnmUYSWqvf7m duKadBteR4/0rqfD3jzW/DGntZabJCsLymUh4gx3EAdfoorlq7Xw38NdX8T6SupWd1Yxws7IFmkc NkdeikfrX3eLlh1T/wBoty+ex5dNT5vc3LH/AAt7xV/z2tf+/AqrqfxN8Ravpk+n3UtuYJ12OFhA OPrWx/wpTxF/z/aX/wB/ZP8A43Wdr/wu1rw9olxqt3d2Dwwbd6xO5Y7mCjAKAdSO9edSllTnFU+X murevQ2ksRZ3vY4WvSPgvEknjO4Zxlo7J2Tnod6D+RNeb16V8E/+RwvP+vB//RkddWaO2Cq+jM6H 8SJ7Zq//ACBb7/r3k/8AQTXyUetfWetSJFoOoSSMFRLWVmJ7AKcmvkw9a8PhVfu6nqv1OrHbxO3+ E8Rl+IVi4IAijlcg9/3bL/7NXrV38UPCdoWU6jJJIjbWjW3kBBHXqoH615V8If8AkfIv+uEn8qg+ KOkf2T43uyoIivALlPct97/x4N+ldGMwdDG5j7Ks2rRTVrd3foRSqSpUeaPcPiB4zHjDUoVto3is LYERB/vMTjcxx9AAP8a4+KGSaVIokZ3dgqqoyWJ6AD1qKvo/wX4M8NafYWWrabC1xNLGJI7mZ9zA MOgAwARyOmeua7sViqOVYaMUnbZLz82ZU4SrzbbNXwfoR8OeF7HTnwZkTfMR/wA9GOWH4ZwD6AV4 Z8UHV/iJqpRgwzEMg55ESAj86+kK+YvH+D471gggj7QRx9BXgcOVJVsbUqy3af4tHVjEo0oxRzYr 6y0OJIPD+mwrnYlpEi59AgAr5NHUV9eW/lfZofs+PJ2Dy9vTbjjH4V08VS/d016/oTgFq2S18/fG KV5PHJV2yI7aNUGOg5P8ya+ga+a/iRd/bfH2qyBsiOQQqA24DYoUj25B49c153C8G8VKXaP6o1xz /dpeZyNfTnw+jSPwFpCooAMG78SxJP5k18xjrX1X4WjMPhHRo2Qoy2MAZSMEHYucj616/FEv9nhH z/Q58CvfbPnnx7ePe+OdZmbPy3LQ8+ifIP0WuaHJFaOso8euX6OpVluJAysMEHceDVa2lEN1DK6C RUcMyN0YA5wfrX0FGKhRio9EvyOSbvJtn0/4S0GLw54atNORcSKgec5B3SkZY5+vA9gKXxT4ih8L 6K2pTQPOiyKmxCAefrWvHIk0SSxsGR1DKR3B6GuL+KWl6lq/hSK00u2luJTdo0kcfXYFfk+2dtfm +HtisavrD0b1voe1K8Kb5Ohg/wDC7tN/6A91/wB/Fo/4Xfpv/QHuv+/i15Jq2h6nokscWpWUtq8i 7kEg+8PWs78a+yjkOXSXNGN16v8AzPNeLrLRv8D6n8LeIofFGirqUMDwo0jJscgnj6VDY+MLHULm 6SC3vPstq0iy3rRgQAoMtznP6VnfC1FX4daWyqAWMxYgdT5rjJ/ACoh4Gkudfnv7ye0hhmhngkjs YWia4WRSuZSWIJAOeB15r5R0MHHEVqdR2SbS+TPQUqjhFrqaVn41sb6RUSy1GNpoXuLXzYAv2pFG T5fzcnGCM46ipIfGOmXEOjzQrO41bd5C4XKBBly/OAFxzjNZfhnwOdBv4JpBpsi2yMsc8NqyTOSM ZZtxHQnOBzTtG8CrpmvX95NciWykSWO0tgCPIWVtzj+gq6lPLU5csnZLTz3Vvyf3iTq6XRoad4z0 7Ur63t47a9ijuiwtbiaHbFcFeTsOc9ASMgZqrp/xC0vUTYFLPUYoL2b7PDcSwAR+bkgISGPJx2yP yOKXh/wAND1K2kb+zZoLZmaOb7KRcNkHG5t23jI5A5xUtn4KuLbwz4e0pruEyaVqKXjSBTh1V3ba Pf5x+VVKnlibUW2tO/nr+X3iTrW1X9af8Et+PtUuNH8PR3dvcPAwuold05JQt8w/Kob3xfZXek6x GV1TTp7GJZJA0KrMEbo6Atg/iRWp4o0SXX9LitIpkiZLiKbc4JGFbJHFZms+ELjU77XLhLmJBqNk lsgZT8hU5yaywssI6UFV0abd/mvLtcqanzPl/rcwtX17UYZvEH2e+uBHb6TBPAWxlXbGW+p710tl 4tge9t9JS1vru9WGBriSKMFIvMUEFySDjnJIBqhfeCLi7OqFbuJftunQ2a5U/KyYyx9qNQ8FXd/q mnTm4soEszCwuIYGFydigFd+7BUkHqOK6pywFSPLJpafjZdt9b/MhKondf1qzodd1208PacL69Ep gMiRkxqGILHGSMjisp/HdjGG3abqpaGLzrlBbjdbIScNIN3GQN2Bk45xV7xRokniDS47OKZImS4i mLOMghWyRxWJrngP+0dfudVt/wCz5Gu0RZY763aQIVGAyFWGDjHB9K48HHAuC9u7PX9Lffr9xdR1 L+6a194w0+0vILWGG7vppbcXRFpD5nlwno7cjj6ZPtyKo2/imx1e+8NXdvcX9vDqH2oxwlUCSCMY bzeTjGCVxn3rJ163PhnXYb7T7xrZ5LBbVol0+SdGVeF2bTgNwMAnFO8MeDro6N4UkvcQnTo7vz4H BDMJ9wA9iAea61h8HToKrfe/z92XS1t7bGfPUcuX+t1/wTdsfHOl397bQpBeJBdSGK2u5YdsM7js rZz2OMgVXm+IOl28l4JLPURBZ3TWtzcCAGKJg23Jbd0J9OfUciqth4HvYDpVldanFNpWk3P2i1RY CsrsCSods4wM9hzT7vwVcXPhnxDpS3cIk1XUXvEkKnEas6NtPv8AIfzqPZ5Yp2v277X323tq/Mq9 a2xq6p4sttHuJEu9P1JbaJ1SS9EA8hN2OSc5xyBkDrUGiahdXHjfxTZyzO9va/ZfJjPSPdES2Pqa w9b+Hd7q02qH7fZML2bzo557YvPFyP3atuwqDHYZrp9L0SSw8T65qryoyal9n2IAcp5aFTk++ayq rBU6D9nK8nHz3vF9fmNe0ctVpf8AzJW8Q2i6tf6cY5/OsbcXEjbRtKnPA5znj0rNi8dafcPp8VrZ 39xNfQ/aEiiiUske4rub5sdQehNM1bwxqNxrt5qOm6jBbLe2n2W4WaAuVAzhkII557/rWZc+ALu6 0fSNNN5ZRizRFa7WBvPQhixMb5GARgYI96KNLL3FOct7d9NHfp37MJSq30RtXnjbTbO6uozbX0tv ZyCK6u4YN0MDcZDHOeMjOAcVKniuyl8SS6HDbXkt1EU8ySOIGNVZAwctnhcEDnv0zWBffDrzNXvr u3/syWG+nad/ttq0kkTNy2whgCM84NdDpOgHTPEetakHjMN+LdY41BzGIkKYP1oqwy+NO9Ntvl/G 6/4P3DTqt69/8/8AgEus+I7XRbi0tXgubq8ui3k29rGHdgBktyQAB9azP+Fg6QulHUWt75YRfnTy piG8S7d2duc47eue1V/GcJstX0rXYLw21zbCSLLWkk8bqw5DCPkH0/8ArVk+HfDeo6po0U92zRP/ AMJD/auZ4SjSxgY+5/CWOTitsNhcE8MqtX5773ei0t2/UmU587jE35fHdjE0iDTdVkaCNZbpUtgT agjIEnzcHHOBn9K07XxJYX2rw6bbGSR5rEX8coA8toi20c5znPbFY974U1Nb/VpdI1O3t4NXUC6S eAu0ZwVLRkMOSD0NMHgy702+sLnRNRit2g0/+z5DPCZMpu3bxgj5s8+lZunl0o6Ss2vPe3XTvord Bp1U9idfH2mPZaTcxWl/J/avnC3ijiVnzGcEEBu56fritfQ9ftdft5pbdJoZIJTDPBcJtkicdQw5 /nXCv4b1PRb/AMD6ZaXMZurQ3x+0GFmj+YbwGGQcEHb1HtXY+GtAl0VL6e7uUuL6+uDPO8abEBPR VGTwKWMoYKFHmpvV3tvtzNdtrL1CnKo5Wf8AWiOc0HxNc3niPXbzUm1G2sbIELDKirDAoUE78Etv 7jGe/tW/pPi+w1a+hsxb3trLcRGa2+1Q7BcIOrIQT255wcVDH4REieI4bq4DRaxJvHljDRjbjv3z zUOk+FdQi1XTb3VtRhuBpVu0FmsEJjzuXaXcknnb2HFVVlgaqk3o0la1+3prro79ASqRsv63/wAj Q8O+KrTxPE0tha3qQKM+bNEFQnP3QQTkjvj86r6n430/TLy9tja39z9hQPdS2sIdIcjIDEkc/wCT 0NWvCWiSeHfDNppU0yTSQb8yIMA7nZu/1riPFENxpepeILbTbqYnWIRutRp8krO5QriNx8uDnknp zgZFTh8Pha+LnCPwrbfXVK7du12EpzjTTe50h8VWCaut7Lc30du2iLf/AGdkXyxGzjDHBJ8zkDHT Het3RdYXWtPF3HaXVtGxGwXKKpdSAQwwTxz/ADrnLHwneobS6Z7YSJoEemNBPF5i+YCGJYZwy8EY rS8I+G5PDdndRyTxs1zOZvKhQrDDn+FASTj8f5UY2GB9m/Zy95Wt/X6hB1ObVaHRV1dp/wAeUH/X Nf5VyldXaf8AHlB/1zX+VRk/2/kZ4zocpRXiWo/GLX7PVLu1jstNKQzPGpaKTJAYgZ+eqn/C7PEX /Pjpf/fqT/45W64axnl94/rlM9FtfiboJ1G70/UZH0+6tpnhbzRuRipIOGA9j1xXQJ4j0OSFpU1n TmjT77rdIQv1OeK+X9U1KTVdVutQlijiluZWldYwQoYnJxkk9feqP517c+GMPNJxk4vqtznWOkul z0X4satomra7bSaU8U0scRW5uIiCrnOFGe5AB554I9K86zSUV7+GoLD0o0ou6Xc5Jzc5OT6n0N8I UnTwIhlYmN7iRoQRjCcAj3+YNXG/G6RDr+mxBvnW1LMMdAXIH8jWZpnxZ1nR9MttPs9P0xYLdAiA xSZ47n5+p6mue8U+Kb3xbqUd9fxQRyxwiECBSF2hmPcnn5jXiYXLK8Mxlip2UXf8djpqV4uiqa3O fr6J+EaMvgKAspAaeUqSOozjP5g187V3WgfFHWfDuiW+lWlrYPDBu2tKjljuYsckOB1J7V25zg6u Lw/sqW909TLDVI0580j6I7VwfxekCeBJFL7d9xGoGcbuSce/TP4Vwn/C7PEX/Pjpf/fqT/45WN4n +Imq+LNLSwvreyjiSYTAwI4bcFYd2PHzGvAwGQYmhiYVKlrJ33Oyri4Sg4o43HOK9R+CUAPiPUZy TlLTYB67nU/+y15eK6Lwr4wv/CN1PcWMNtK06BGE6swABzxhhX1GYUJ18NOlT3aOGjJQqKT2PoXx hLHB4M1tpGwDZTKOO7IQP1Ir5X7132sfFfW9b0i5064tNOSK4TY7RxuGA9suR+lcEelcOSZfUwVK UKu7f6GmKrRqSTid98IFJ8dxkAnFvITjtwK7b4zaN9q0G11WNcvZy7JCF/gfjJPswX/vo15T4W8U 3vhLUZb6wigklkhMJE6sV2llPYjn5RXQ6r8V9Z1nSrjTryw00wXCFH2RuCPQj5+oOCKjFYHEyzGG Kp25VZb9Nb/mVTqwVFwluzz+vcPgxr32nSrnQ5XG+2bzoQTyY2PzYHoG/wDQ68PrY8Pa7d+G9Yh1 Oy2GWLcMOCVYEEEEAjPX19K7sywf1zDSpdd16oxo1PZzUj6qr5g8c2r2njjWY5AQWu5JBkY4c7x+ jCuo/wCF2eIv+fHS/wDv1J/8crlvE/im48VXkd1eWNlBcKu1pbZGUyDtuyxBx615GSZZisDVk6tu Vq2504qvCrFKO5z2e9e+eBPiHo914etLLVL6K1vbdVhYzttEgAwrBjx0Aznv9a8DzSV7OPwFLG01 CppbZo5qNWVJ3R9Oav498N6VYSXP9q2ty6g7IbaZZGdscD5ScfU8V82313LqF/cXkx3SzyNK5Hdm OT+pqtSVll2V0sCpcjbb6sqtXlVtcnhikmmSKJGeR2ChVGSxPQAetfWOnRPBplpDKNskcKKwznBC gGvlvQ9Yl0LVodRhtreeaE7kWdWKhuxwCOR2rtv+F2eIv+fHS/8Av1J/8crhzzL8RjeSNK1o33fc 0wtWFK7l1KvxW8PSaR4qkv0QC01AmVSo6PxvB98/N/wKuAz0rudd+Jup+I9KfT9Q07TDExDKyxyB kYdGU7+CMn8zXC16mAjWhQjTr/EtPVdDGs4ubcNme0fD/wCJ2nW+kQaTrtw0MsHyQ3DKSrJ/CGIy QR06YwBXo8fiPQ5oDcR6xYNEv3pBcphfqc8da+UBS8+9eZi+HcPiKjqRk4337G1PFzirNXPRPi7r FnqviS0WwvILmCG1ALwOHUOWYkZHB421513oNFexhqEcPSjSi9Ec85ucnJn038PIkh8AaQsY+Uwl sZ7liT+pNdPXz3o/xY1vRNJttOt7TTnit02I0kbliPfDgfpV3/hdniL/AJ8dL/79Sf8AxyvjcVw9 i6tedRWs23v3Z6MMXTjFI93orwf/AIXZ4i/58dL/AO/Un/xyj/hdniL/AJ8dL/79Sf8Axyuf/VnG +X3l/XKZ7xRXg/8AwuzxF/z46X/36k/+OUf8Ls8Rf8+Ol/8AfqT/AOOUf6tY3y+8PrlM94orwf8A 4XZ4i/58dL/79Sf/AByj/hdniL/nx0v/AL9Sf/HKP9Wsb5feH1yme8UV4P8A8Ls8Rf8APjpf/fqT /wCOUf8AC7PEX/Pjpf8A36k/+OUf6s43y+8PrlM94orwf/hdniL/AJ8dL/79Sf8Axyj/AIXZ4i/5 8dL/AO/Un/xyj/VnG+X3h9cpnvFFeD/8Ls8Rf8+Ol/8AfqT/AOOUf8Ls8Rf8+Ol/9+pP/jlH+rWN 8vvD65TPeKK8H/4XZ4i/58dL/wC/Un/xyj/hdniL/nx0v/v1J/8AHKP9Wsb5feH1yme8UV4P/wAL s8Rf8+Ol/wDfqT/45R/wuzxF/wA+Ol/9+pP/AI5R/qzjfL7w+uUz3iivB/8AhdniL/nx0v8A79Sf /HKP+F2eIv8Anx0v/v1J/wDHKP8AVrG+X3h9cpnvFFeD/wDC7PEX/Pjpf/fqT/45R/wuzxF/z46X /wB+pP8A45R/q1jfL7w+uUz3iivB/wDhdniL/nx0v/v1J/8AHKP+F2eIv+fHS/8Av1J/8co/1axv l94vrlM94orwf/hdniL/AJ8dL/79Sf8Axyj/AIXZ4i/58dL/AO/Un/xyj/VrG+X3j+uUz3iivB/+ F2eIv+fHS/8Av1J/8co/4XZ4i/58dL/79Sf/AByj/VrG+X3h9cpnvFFeD/8AC7PEX/Pjpf8A36k/ +OUf8Ls8Rf8APjpf/fqT/wCOUf6tY3y+8PrlM94orwf/AIXZ4i/58dL/AO/Un/xyj/hdniL/AJ8d L/79Sf8Axyj/AFaxvl94vrlM94orwf8A4XZ4i/58dL/79Sf/AByj/hdniL/nx0v/AL9Sf/HKP9Ws b5feP65TPeK6q0/48oOf+Wa/yr5d/wCF2eIv+fHS/wDv1J/8cr6W8MXT6n4T0a/mVRLc2MEzhFOA WjUnHtzXoYHJcVh781tfM5sRiITtY+L9d/5GHU/+vuX/ANDNZ1aGu/8AIw6n/wBfcv8A6Gaz6+wO EKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAK+3fAv/ACT3w1/2CrX/ANFLXxFX274F/wCSe+Gv+wVa/wDopaAP jLXf+Rh1P/r7l/8AQzWfWhrv/Iw6n/19y/8AoZrPoAKKKKAFoxTgMVo6JapdanEkoBQZYg98dqUn yq7NaNKVWpGnHduxmlSOx/Kiu/1KCyltgt2VQEgK/AIPsaxzoOmSMfK1AYHberVjGvFq7R6uIyWr TnywkpfNJ/dc5eiuqbwnGwBS7YfVM5/WhfCaA/NdsR7R4/rT9vDuZf2LjL25fxX+ZyuPeiuvXwrb BvnnlI9AAKkHhmwU9ZT7Fh/QUvrNM0jkWMe6S+ZxmKK7dfDmnK2TG7D0Lnmn/wBgaZ/z6/8Aj7f4 0vrUDVcPYp9V97/yOFpfxrvF0TTl6Wi8/wB4k/zNO/sbT/8An1T8qX1qPYtcOYjrJfj/AJHAYorv DoWms2Tarn2LD+Rpp0DTCCBbY997cfrR9ah2Ynw5iuko/e/8jhcGjFdr/wAI1p/91/8AvukPhnTz 0Eo9w3+Ip/WYGbyDF+X3nF0ua7A+F7EjiSb/AL6X/CoT4UiOdt04+qA/1prEUzOWR4xbRT+aOUor p/8AhEhji8P/AH7/APr1H/wik3/PzH+Rqvb0+5k8nxq+x+K/zOcoroW8KTjpPET6EkUn/CKXf/Pa D8z/AIU/aw7kPK8WvsM5+jFdB/wil3/z1g/M/wCFH/CKXf8Az1g/M/4U/aw7k/2biv5Gc/ijFdB/ wil3/wA9YPzP+FH/AAil3/z1g/M/4Ue1h3D+zcV/Izn8UYroP+EUu/8AnrB+Z/wo/wCEUu/+esH5 n/Cj2sO4f2biv5Gc/ijFdB/wil3/AM9YPzP+FH/CKXf/AD1g/M/4Ue1h3D+zcV/Izn8UV0H/AAil 3/z1g/M/4Uf8Ipd/89YPzP8AhR7WHcP7NxX8jOforbbwzfgkDy29w/Wk/wCEZv8A+6n/AH1S9pDu L+z8V/I/uMWitr/hGb/+6n/fVH/CM3/91P8Avqj2sO4f2fiv5H9xjcUcVrHw7qQb/UqffzF/xpv/ AAj2p/8APsP+/i/41XtId0S8DiV/y7f3MysUYrV/4R7VP+fcf99r/jR/wj2qf8+4/wC+1/xo9pDu hfUcT/z7l9zMrFGK1f8AhHtU/wCfcf8Afa/40f8ACPap/wA+4/77X/Gj2ke6D6lif+fcvuZlYoxW uvh3USeYVA9fMX+hqRPDN8zYIjX3L/4VPtYdy45fipbU39zMSiuiXwpcHrPCPpk/0qRfCRI+e8wf ZM/1pe3p9zWOUYyW0PxRzNFdZ/wikH/Pw/8A3zUo8LWOOZJ/++l/wqfrFM3WRY1/ZX3o489aTrXX SeFbdidk8gHbIB/wqhc+F7mPLQSJKB2+635dP1pxr031MquT4ymruF/TUwKSppoZIHKSIysOoYYI qKtjzHFxdmJRRRQIKKKKACiiigAooooAKKKKACiiigAr7d8C/wDJPfDX/YKtf/RS18RV9u+Bf+Se +Gv+wVa/+iloA+Mtd/5GHU/+vuX/ANDNZ9aGu/8AIw6n/wBfcv8A6Gaz6ACiiigBa0NIuxZX8crf dzhvoaoUAd6TSaszWlUlSmpx3Wp13iKxNxbLdRfMyDnB4K9c1yOSD1xXZeH7sXmnG3lwzRjaQe6n p/h+VczqVobG+khOdoOVJ7r2rCi7NwfQ9fNaaqRhjKe0t/JlZZZEbKuwPrmrSarepgC5l44ALnH5 VS496St7J7njxqzh8LaNZPEGophfPBA/vKD/AEzU6eKL1TysT/7yn+hrCoqXTg+h0RzDFR2qP7zo R4ruc/NBCR9CP60v/CWT/wDPtH+Zrnc0ZqfY0+xqs2xi/wCXjOmXxaQPnswT7Pj+lO/4S5P+fM/9 /f8A61cvRR7Cn2LWc41fb/Bf5HVjxZCetqwPs4P9KcPFVuSM28gGeSCK5PIpM1P1en2LWeYz+b8E dl/wlFh/dn/75H+NNbxRZj7kcpPoQB/WuPz7UUfVqZTz3Gd19x1jeK4QDttWPplgKgfxZIT+7tUX j+Jyf8K5s4pKaoU+xnLOsbL7dvkjdk8T3rH5REn+6p/qaqvr2pSYBuSMf3QB/IVmZozVqnBdDmnj 8TPeb+9l46rfE5N3Nn2cioWu7lyS08hJ6ksar4o49KpRS6GEq1SW8m/mTfapv+er/wDfRo+1Tf8A PV/++jUNFFkL2s+5N9qm/wCer/8AfRo+1Tf89X/76NQ0UcqD2s+5N9qm/wCer/8AfRo+1Tf89X/7 6NQ0UcqD2s+5N9qm/wCer/8AfRo+1Tf89X/76NQ0UcqD2s+5P9qm/wCez/8AfRqRNQu4xhLiVRno HIqr9a0NH0ufWdWtNOtv9bcSBFJ6LnqT7AZJ9hQ1FJt7IFVqX0bI/wC1b8f8vk//AH8NP/tnUP8A n6k/Oo9QsZtN1C5srhQs1vI0TgcjcpwcVUpJRauti1ia0dptfNmqviLUlx+/4HYov+FTp4nvlzuE T/7ynj8jWFmjNJ04PoaxzDFR2m/vZ0i+LJQw32yH1wx5/nUy+LIv4rVh/wADz/QVytFQ6FN9Dojn ONj9v8EdmviewbAZJh65UYH61KniHTXzmZk/3kPP5Vw/NLmpeGgdEeIMWt7P5HerrWnN0uk59QR/ Spxe2jHAuoGz2EgrzrNOBFS8LHubx4jrdYr8T0b7TB/z3j/77FH2mD/nvH/32K843H1NG4+ppfVF 3NP9ZJ/yfj/wD0U3dsv3rmFR6mQCon1SxQ4N3F+Bz/KuALGm01hY9zOXEdX7MEd2de0wZzdDPsjf 4VCfEmn46y/98VxVLn2p/VYGT4hxT2SXyf8AmdkPE9gTgrMPfaP8a0LTULW8H7mQFu6nhh+FeeZq WN2RgykqRyMcYolhYtaFUeIMRGX7xJr7j0C6sbe9TbPGrccN0I+hrgrmA2t1LC3VGIrvNPuftenw Tk5LIN31HB/WuU8Rpt1eQj+JVz+X/wBaow7ak4M688pU6lCGIgtXb5poxaKKK7D5QKKKKACiiigA ooooAKKKKACiiigAr7d8C/8AJPfDX/YKtf8A0UtfEVfbvgX/AJJ74a/7BVr/AOiloA+Mtd/5GHU/ +vuX/wBDNZ9aGu/8jDqf/X3L/wChms+gAooooAXFFGantrdri4SJfvMwUfjSKjFyaS3NnwxFK180 ikiNFIb3z2/r+FWfFkS7IJcfPkrn261uWVpHY2ywx9F6n+8e5rm/FFz5l1Hbg8RLk89z/wDWx+dc cJ+0rXR9XicOsHlbpzd27fffp6I52iiiu0+SCiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo ooAKKKKACiiigAooooAKKKKAOts/hz4rvoRNb6QzRMAys0sahgRkEZYZHuK9B+G/w+1PQtbbVdZh iiZISsMYkDsGbgk4yOmR1/irnPht461DTNRtNDmDXVjcSiONB96FmIAKk/w56j3J+vvFfIZ3mONo N4eajyy2avdr7z0cLRpytNXujx34reDL261iHV9K0+e5+0JtnWCMuwdeAxUDPIx/3z715Pc2lzaP subeWBv7siFT+tfWl7dRWNlPd3DFYLeNpZGAzhVBJOPoK+dvGvju98XTiFVNvp0bExQA8sezP6nH 4D9a6cgx2IrwVJwvGOnNf7l5kYulCL5r6vocXRRRX0xwhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA BRRRQB1/hafdbSwE8o24fQ//AKv1qh4pAGoRkDrGCffk1B4duPK1ZFJ+WRSp/mP1Aqx4r/4/of8A rl/7Ma5lG1b1PoJ1va5Sk94uxz1FFFdJ8+FFFFABRRRQAUUUUAFFFFABRRRQAV9u+Bf+Se+Gv+wV a/8Aopa+Iq+3fAv/ACT3w1/2CrX/ANFLQB8Za7/yMOp/9fcv/oZrPrQ13/kYdT/6+5f/AEM1n0AF FFFADqt6fcC2voZj0VwT9O9U6KTV1YuE3CSkt0emKwZQykEHkEd64TWA41S435zvJGfTt+mKt6Tr r2IEU2Xgzxjqv0rburSx1yLzIpV8wDhl6/iK5IJ0Ze9sfU4mpDNMOlSdprXlf9fccRR+NbN14cvY MlFWVfVDz+VUX0+7iGXtplHqUIrqU4vZnzdTCV6btODXyKlH41aSwupThLeVv91Canj0TUJCMWrj Prx/Ohyit2TDD1pfDBv5MziMU8AscDJJ7Cuhh8OJCnnX9ysUeeinr+J/+vTm1fTtOHl2FsHfvIe/ 58/yqHUv8KudkcvcFzYiSgvPV/cjOh0K/nG4QFF9XOM/geauDwrck/NPCB9Sf6VBN4lv5G+Rkj/3 V/xzTE8RairZaZWHoyD+gqX7Z7WN4PK4aSUpeehfHhP5cm8+b0EfH86ifwpcqMpNE3tkipoPFZzi 4tx9UOP0P+NakGu6fcYAm8tj2cY/Xp+tZOVeO56VLD5PXVoOz821+ZzEuhahFy1sWH+wc/oOazmj dGwykY9RXpCOki7kdWU91ORSPFHKMSIjj0ZQRSWKa+JDqcPU5a0pteup5tjrR/DXc3Gg2FwD+7Mb eqHH6dK5fU9Kn02T5vnjY/K4HB/wNdFOtGeiPGxmVYjCrnlrHujMooorU8wKKKKACiiigAooooAK KKKACiiigDv/AIT6YL3xtHcuR5VjE87FumcbRz2OWz/wE10njj4q5Mmm+HJSuDtlvV69ekf/AMV+ XrXlkGpXltY3VpDOyQXO3zlXHz7c4BPXHJ46dPQVRxxXnVMtp18V7etrZWS6erN413CHJH5n0N4Z 8XweMPB99BOEOpRWrx3EBAPmDZjeB6HuOx49M/PR4P0rR0TWbzQdWh1CykKTRH8GXup9iKzc1WCw EcJUn7P4ZWaXbe4qtZ1Iq+6G0UUV3mIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAT20xguop h1Rg35HNdB4qUN9lmUkqwYZ7diP51zeOK6a0I1rRjaMf9IgHyE9wOB/gfwrKeklPsepgX7SjUw3W STXqtbfM5aipGUoxVgQQcEEdKjrU8vYKKKKACiiigAooooAKKKKACiiigAr7d8C/8k98Nf8AYKtf /RS18RV9u+Bf+Se+Gv8AsFWv/opaAPjLXf8AkYdT/wCvuX/0M1n1oa7/AMjDqf8A19y/+hms+gAo oooAKKKKAFzUiSPGQUYgjoQcEVHiigabWqNSHXdRh4W4Zh6Nhv51aHim9UAGOFvcqef1rBxR0qHT g90dUcfiYqym/vN5/FF6wwEhX3AP9TUD+IdRkBHnAA9lUf8A66yKKFTgug5Y/Ey3m/vJ7i6muH3S yO7erHNQUUGqOWUnJ3b1Eooopki0oBrY0fwzrGvPt0zTp7gDq4GEH1Y4A/Ou+0v4J38219U1KG2X vHApkb6ZOAO/rXHiMww2H/izSfbd/cjWFGpP4UeXw3M1u+6GVkPqpxWxbeJrqPAmRZ1/75P5j/Cv abH4U+FNNTzbmGW7KDcXupsKMdThcDH1zV9/E/gnw5mOO9022xwVtIw2OTwRGD3zXkVM8pVHy0KU pv7v82ehQeIoaxqcv9dtjzPT0vdRVjHpWoLt+9m2cgfiBj86Zc28dzA8Mq5Rxg+3uK7u7+MPhi33 CL7bckEgGOEAH3+YjiuC1LxlpWs6zvtbF7ISD5y7ggvn0A4+uarC1MVUk5TpOC/r5nvYXNadT9zi JJ30v/mZ1j8M9d1WEz2P2WSLcVBM4DDHqO1aqfBbxG0YJu9MQkZKtLJkexwmK1dI1u70Scy2xVlY YaJ87W9M+/vVfUPi94lsrlo203TUX+HckjZH13jP5Vc62ZyqONHlt57nl5hltPCy5mnyv8DIk+EH ilXZUSzcA4DLPwfcZGapzfCzxfDvP9lCRUBO6O4jOfoN2f0roR8b9S4zpNqTjnDtV6D45LlBcaAQ MDe0d3+oBT9M1Hts6j/y7i/69TzOXDP7T/r5HnF34R8Q2QZrjRb5EXGX8hioz/tAYrIkhkhkMcqM jqcFWGCPwr3iz+M3h2cAXNvfWz4JOY1devQEHP6Vsx+O/BesoIJNStHXI+S6iKKCQf74A9ef8aX9 rY6l/Fw7+X/DP8w9hSl8Mz5qI96Svo+++HHg/XIPtEFokQk5Wexl2gjJ6DlOvtXHap8EpkBfSdVS T0iuU2n/AL6XPv2FdFHPsHUdptxfmiZYSottTyGiuh1rwbr3h/Lahp0qQgkCZPnjP/AhkD8cVz+P avYp1YVI80GmvLU5nFxdmhtFFFUIWgU7GTgZq3Fpl5ONyW0hHrsOPzpNpbmkKc5u0Ff0KVKKvnSN QAJNrJx6CqkkMsTbZI2U+jDFCknsxzo1IfFFr1RDRRRTMgooooAKKKKACiiigAooooAKKKKACiii gAooooAXtVyxvJLG5SeM9Oo9R3FU+9FJq6sy4TlCSlF2aN7XrWN1j1K25in+97N/n+VYRya3tDmW 6gl0uflHBMfqG9v5/hWPcQvbTvC4wyHBFRT09x9PyOzGxjNRxEFpLfyfX79yvRRRWhwBRRRQAUUU UAFFFFABRRRQAV9u+Bf+Se+Gv+wVa/8Aopa+Iq+3fAv/ACT3w1/2CrX/ANFLQB8Za7/yMOp/9fcv /oZrPrQ13/kYdT/6+5f/AEM1n0AFFFFABRRRQAUUUUAFFFFABRRRQA7tRjPSus8LeANZ8UOrxRfZ rLPzXUwwv/AR1b8OPUivZtG8JeGvA1gb2ZovNjGZL66IyD6L2XnoBz25ry8bm9DDPkXvT7L+v+Cd FLDynq9EeSeHPhfr+vBZ5Yhp9oeRLcqQzD/ZTqfxwPevUdJ+Gvhbw9a+ffRR3kiDL3F4RsH/AAE/ KB9c/WsPxD8ZrOBWh0C2NzJyPtE6lUHuF6n8cV5ZrXifWPEE2/VL6WcL91OFRfoowAffGa89Uczx +tSXsodlv/X3ehrzUaPwrmZ7frPxT8M6KhgtJDfSoNqx2oHljHQb+mOO2a881j4w+Ib9itgINOiy cbVEj492YY/ICvOjQCR3rtw2R4Ohq48z7vX8NjKeJqS629DS1PXdU1dg2oahc3JByBLKWAPsOg/C syijvXrRjGKtFWRg23qxKAcGiimI6nSPEC7Vt7xjnosh/r/jW7cW1vfW3lyKrowyrDt7g155itPT dZuLBthJeHPKH+npXLUoa80Nz6HA5xaPsMSrx2v/AJ9w1XSJdObcMvCx+V/T2NZVegwXNpqlqwUh 1YYZCOR9RXH6tpzafdsgBMTcox7irpVXL3ZbmOZ5dCklXw7vB/gZtFFFbniF6y1K90+TzLG8uLaT +9DIyH8wfc12OlfFvxNp2FuZIb+IcbZ4wGH0ZcH881wNFY1sLRrq1SCfyLjUnD4WfQGi/F7w/qW2 O+WXTpj/AM9Pnj/BgM/mBWhf+B/CHim2a5t4bYM+cXNg6jnufl+U/iP5184cZrd8O3et2V55+jXM tvIMbmQ4U+zA8N9CDXiVcjjSbqYSo4P10/z/ADOulXnVapyjzX+86TxB8Jte0lnlsEGpWyjOYRiQ D3TqT/u5rmtO8PTXWHn/AHMXuPmb6D/GvQ9U8b6hPYRQaheRW424kMKld59SMk/gPyrb0DwlYazp /wBrXV451YYBsyDsPuSOvsQKuOPxGHoXxbV+jSZ61PLcLSlzV5a/y9fmcNaabaWI/cxAN3ZuW/P/ AAq3Vbxd4P8AFOgNLcrPJeWC5bz7cEbF/wBtRyv15HvXCpfXUZylxKv+65FdlGMcRD2kJqSOn+26 GH/dwpNL5I9DpkkaSxlJEV1PUMMg1xlt4gvoCA0pkX0cZ/XrXV6ffx6hbCROGHDrnkGipRlT1PSw mZ4fGPkWj7M5bWdJOnzeZECYH6H+6fQ1j5wa9IlijniaKVA6MMEGuL1XSJdPk3ffhY4Vv6H3rpoV uZcstz5/N8qdCTq0l7r38v8AgGTRRRXSeAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFq0na 2u4ph1Rga1vE9ui3MNynSZOfcjHP5EVhda6TV/8ASPD9ncc5XA6e2CfzFZT0mn8j08L+8wtWm+lp L5b/AIHMUUUVqeYFFFFABRRRQAUUUUAFFFFABX274F/5J74a/wCwVa/+ilr4ir7d8C/8k98Nf9gq 1/8ARS0AfGWu/wDIw6n/ANfcv/oZrPrQ13/kYdT/AOvuX/0M1n0AFFFFABRRRQAUUUUALRRWtofh /UPEWoLZadAZZDyx6Ki5xuY9hSlOMIuU3ZIaTbsihb2813OkFvE8ssjBUSNSzMfQAdTXs/gj4UQ2 ix6j4iiWa46pZnlE6YL/AN4+3T610fhnwbo3gWwkvbieJrlU/fXs+ECDPRcn5RyB15/SvP8Axv8A FO41VX0/Qnkt7I8SXH3ZJR6Duo6+59uRXzdXHYjMZujgtIdZf1/w/odkaUKK5qmr7HaeKvibpHhx XstOVL29jGzy0OIoiB0LD0/uj6cV4rr/AIk1TxJdm41O6MhH3IxwkY9FXoP5+prF70lepgcroYNX iry7vcxqV51N9hKKKK9EwCiiigAooooAKKKKACiiigCxb3MtrOs0LlGXoRXUrc22v2LQPtjuVGQC e/qPb1FchUsM0kEiyRna6nINZzgparc78JjZUbwlrCW6/wAvMJoXgleOQYdTgiox3rqJ7SPxBbR3 Vu8cdwBtlU5A/r/n6VSHhq+L7SYgP75bj/Gkqsbe87Mqrl1bmvSTlF7NdjDJzUsMEs77IkZm9AMm toaZptmN97eLIe0cXU/5/CkfxAsCmLT7VIF/vkZY+/8A+vNPnb+FCWDhT1xE0vJav8NF8yS20OK2 jFxqkyxr2jB5PscfyFNu/EBWPyNPiEMfQNjn8B2rFnuZrh980jO3qxzUBpKnd3nr+Q5Y72cfZ4aP Kur6v59PkSSStK5eRmYk5JJyTWjo2vajoF6LrTbuSCT+LaflcejKeGH1rKorSUIyi4yV0zg5ne/U 968KfFrT9UEdprQWxuzx52cQv7kn7n48e9P8ZfC/T9bhe+0RYrS/IL7F4inz69lPXkfj614Hmu/8 E/Em88Nsllfb7rS+AFz88PPJQ9x/s9PTHOfnsRlNTDT+sYB2fWPRnVCvGa5Kv3nG6jp93pd69pfW 8lvPGcNHIMEf4j370adfyafcCWPB7MD0I9K+iNU0fw98RdCS4jlSTI/c3cWN8TY+6e/cZU14T4n8 K6h4V1NrS8j3RnmGdR8kq+o9D6jt+tduAzOni70qi5ai3T/QThUw8lUpv0Z01tdQ3dus0Lbkb8wf Q1LJGkkZjkUMjDBUjINcFp+pTafNujbKk/Mh6MK7ayvob+DzYW6feU9VPvWlWi6butj7HLszp4yH JPSXVd/Q5bWdF+wnzocmBj0PVD6H296xcHHtXpMkaSxNHIoZGGCPUVw+rae2nXZUAmM/MjH0rooV ub3ZbnhZxlaw79tTXuvp2f8AkZlFFFdJ4AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA7tXU2yC78J SRgZMYOPXg7v5Vy3Wuq8LyiS1ubZsEAggHvkYP8AIVlW0jfserlFpV3Tf2otfgcpRVm6tzb3UkLd UYiq/bNaLXU8yUXGTi90NooopkhRRRQAUUUUAFFFFABX274F/wCSe+Gv+wVa/wDopa+Iq+3fAv8A yT3w1/2CrX/0UtAHxlrv/Iw6n/19y/8AoZrPrQ13/kYdT/6+5f8A0M1n0AFFFFABRRRQAtFFdF4V 8MXnivVo7O2QrEpDTzdokz1+vXA7/mampUjTg5zdkhxi5OyDwt4T1HxVqAt7GMrCrDzrhh8kQPr6 ng4Hevd0j8PfDfw3ubEMQwrPtBluH/8AZj19gPQVaVNK8EeH47e2jCRID5cefnmfuSfX1P8A9YV4 v4nh8QeJr77Zf3Fu+PljhRiFjX0AI/Xqa+YvVzmpr7tFP5v+vwN6mIoYP3ZSXO/wKHi/xtqPi27B kPkWcZPlWyE4HPVv7zdOfyArk62JPDmqRgk224D+66n9M5qrJpd9CCXtJwB1Ow4/OvpaVKnSgoU1 ZI5PrEKjvzpv1KFFSNG6MQ6lWHYjFR1oWFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAODFTkEipGnl cYMjsPQsTUVFKxSlJaITJPeiiimSFFFFABRRRQAUUUUAdF4X8U6h4V1Nbuzk3RnAmgY/JIvofQ+h 7fpXu9jqGg/Enwy8TqGVxiaBmHmQP6g/ybv+Yr5nrU0TW73w/qcd/YSmOeM/VXXurDuDXlZjlccT +9pPlqLZ/wCZ0Ua7h7stUbnjTwLf+Fb1iEebTXbENzj16K3o3H49vQc7p1/Jp9wJY8HsQehHpX0H 4X8UaX4/0Ka1uoYvtHl7buzfoR/eXvtz+IP4E+O+OfB03hLVtgy9hOS1tKTk4HVW9xkfX+WWX5hO pJ4XFK1Rfiayi6TVak9PyNi1uY7y3WaJgVbr7H0NRajYrf2jRPgN1Rv7rVyOkam+n3AySYXOHX+o 967aKVJY1kRgyMMqR3FdNSm6Uro+wwOMp5jQcJrXZr9TzuWJ4JWjkXa6HBFRetdjruj/AGwfaYB+ 9UfMv98e3vXHsMHB61206inG6PkMfgp4Sq4S26PuhlFFFaHCFFFFABRRRQAUUUUAFFFFABRRRQAt bvhiXy9SaM9JEIx7jn+hrCHer2lTeRqcD5wN4BPseD/OoqK8GjqwVX2eIhPs0aPim28u9S4H3ZV5 PuOP5YrA7V3OvWv2nS3IGXiO8fQdf0/lXD9qihLmh6HZnWH9jim1tLX/ADG0UUVseSFFFFABRRRQ AUUUUAFfbvgX/knvhr/sFWv/AKKWviKvt3wL/wAk98Nf9gq1/wDRS0AfGWu/8jDqf/X3L/6Gaz60 Nd/5GHU/+vuX/wBDNZ9ABRRRQAUUUUAaWkaXc6zqttp1mu+e4cIo7D1J9gMkn0Br6Hgi0j4b+Dtz 4EcKgyMoG+eU+nqSenoB6Csb4YeDR4f0w6tqCBL+6jyA3BhiODg+hPBPpwPWvOviR4ybxNrJtraT OmWjFYQp4lbu5/kPb6mvmcROWa4v6vB/uofE+7/r9Wd0EqFPmfxPYNU+I93q9+9xdWabekcayEBB 6dOfrVIeNFzzYf8Akb/7GuSor6KnRhTgoQVkjyKuDo1Zuc1dvzf+Z2Q8Y22ebWT/AL6FTf8ACX6f /wA87n/vlf8A4quI/Gj8arlRj/ZmH7fid0/ifSZRtfey+hjzUMt54Xm++IvqsTr/ACFcVml/Gnyi WXU4/DKS9GdZJY+GpCdtxsz/AHXPH5g01tB0ZzmPVEVfRpFJ/pXK8+pozSsarDTW1RnSf8IxauCY 9XgYj0Ax+e6o/wDhFx/0Erb865/cfWjcfWnqV7Kt/P8Agjov+EQvG+ZLi2dT0O5uf0pP+EPvv+e9 t+bf/E1z24+p/OjcfU/nRqHs6/8AOvu/4J0x8HzAFjeRgDkkqaYnhZGYBtStwD/d5P5Zrnd59aua UN+p2qkZBlTI9two1JlTrxi37T8Ebj+EYY2xJqaoeuGjA/8AZqePBa978/8Afr/7Kq3i186pGoPK xAH8yawY7iaFt8UrofVWINLUxpwxNSmpqpa/kjp/+ELX/n/P/fr/AOypP+ELH/QQ/wDIP/2VZUPi PUoRj7RvHo6hv161oxeMrhf9baRt/uMV/nmjUynDMI7ST+7/ACJP+EKH/P8An/vz/wDZU1vBsgPy XakepQj+tO/4TUf8+B/7/f8A2NSr4yh2/NZyBvQOCP5Ue8ZXzJb/AKFU+DZ8cXcZ/wCAmq8nhPUU +75UnGflf9OcVpjxjbZ5tZP++hVlPFmmtnPnLj+8g5/I0aj9tj47xv8AL/I5iXQdTjzmzkOP7uG/ lUEulX0Cq0trIqt0O3Nd9Z6rZX8hjt5t7BdxUIw449R71ZmmhgUPLKkak43OwUZ9OaV2L+068Zcs 4a/M8ueKRGwyMD6EYpm0+hr04ahYk4F5b/8Af1f8aebm2IIM8RB4ILinzGn9pzW9P8f+AeX4PpSY Nemf8S//AKdf/HaiNppMvyeTaEsf4QoOfw5o5ilmi6wZ5zxSZr0V9A0tjk2aj6Mw/karSeFdMfO1 ZU5/hfp+eaOZFxzSi900cxomt3nh/U4dQsJDHLGeR2de6kdwf89K+hLefSPiR4PIIHlTDa6ZBe3l Hp6Edj3B968Zl8G25J8u6lX03KG/wrofBP2vwjrPmLdibT5wFuIiCpPow68j9Rkd+PIzbA+3gq1L SpHVefl/kd+FzXDp8spaPumcDr2h3nh7WJ9OvU2yRNwwB2uvZlz1BqfRNY+xv5ExJgbp/sn1r2/4 g+EIvF2hrdWIVtQt0L27r/y2Q87M+/b39Mmvnh42jco6FWU4KsMEGtcuxscfQ974lo159/mejCpU wdVVKb9PNdj0dWDKGUgg8gjvWTqmhQ326WLEc/X2b6/41g6brs9gBEwEkIP3SeR9DXR2uuWN1gCY Ruf4X4/XpWrp1KTvE+pp47B5hS9nVsn2ffyZxl1ay2spjmQqw7H+Y9qrmvRLyygv4PLlUEY+Vh1X 3BrjtS0qbTpfn+aJj8rjofr6GuilXU9HueBmGU1ML78dYd+3qZdFFFbnjhRRRQAUUUUAFFFFABRR RQAUqnDA+9JRQB6PaSi6sopDhhIgLA+uOa4bUbVrS/mgPQNx7jt+ldL4ZuPN01oieYmIA9jz/PNV vFNr8sd0q/7LH+X9f0ripPkquB9ZmNP61l8MQt0r/o/xOVooortPkwooooAKKKKACiiigAr7d8C/ 8k98Nf8AYKtf/RS18RV9u+Bf+Se+Gv8AsFWv/opaAPjLXf8AkYdT/wCvuX/0M1n1oa7/AMjDqf8A 19y/+hms+gAooooAXOa7/wCGHhP+39e+2XUQawscSOD0kf8AhT3HGT9MHrXE2VpNf30FnboXmncR xr6sTgV9IWkFh8O/Av70hlto98rL1mlbrj6nAHoMelePnONlRpKlS+Oei/r8jpw1NSlzS2Rzfxa8 XnTNPGhWUu26uV3TurYMcf8Ad47t/LPrXhecVoavqlzrOq3Oo3jb57hy7HsPQD2AwAPQCs411Zbg o4Ogqa33b8yK9V1J3EoooruMQooooAKKKKACiiigAooooAKKKAOaAHjPritTw/E0ut2+0fdJY+wA qumlX7hStpOVPIIibB/HFbumW7aFY3N/dqI5mTbEjdSfp9cfkals5sRViqbindvRL1MrxBcC41md gchTt/IYP65rJp7MXYsxJJ5Oe9R0zeEVCCiugUUUUygooooAKKKKAOo8GR5u7mTH3UC5+p/+tT/G M5M9tb/3VL/mcf0NVfCt4LbUWgc4WYbf+BDp/X86ueMocfZZx3DKf0I/rU9TyZK2YJy6rT7jk8n1 oyfU0lFUesLk+poyfU0lFAC5PqacHZWDKxBHII7UyigLFkXlypBE8gI5BDmp11fUAwP2y4yP+mrH +tUKKViXCL6Hs3wo8ay3Fy2galOXZwXtHb1HLJ/Mj6H2rK+L3hU2GpLr1quLe7bbOB/DLjr9GA/M H1rza1up7K6iuraRop4mDxupwVYdCK+j9Iv7H4heBilwAfPj8q6jHWOUdx+IDD8K+bx0Hl2Ljjaa 9yWkl/X9X9Tvo2q0/ZPdbHzRRyDWnrWk3Gh6vdabdACWBypI6MOoYexGCPrWZX0kZKUVKLumcbTT sy/ZardWJHlSErnJQ8qfwrrIJ7XXdPZSuOzIeSjdiDXCjpW74ZuDFqHk84lUjHuORWNamrcy3R7O VY2aqKhUd4S0s/PsZFxC9tcPC33kYg1Ae1dL4otVWaK5XguNrfUdD+X8q5o9K0pz54pnBjsM8PXl T7fl0EoooqzkCiiigAooooAKKKKACiiigDovCs228miJ4ePP1IP/ANc10OpwfadNuIsZJTK/Uciu Q0OXytXt2zwW2H8eP613VcGI92opI+yyVqtgZUZd2vkzzMnHFHWrmowC3v54hnarED6dv0ql3ruT urnyFSDhNwe60EooopkBRRRQAUUUUAFfbvgX/knvhr/sFWv/AKKWviKvt3wL/wAk98Nf9gq1/wDR S0AfGWu/8jDqf/X3L/6Gaz60Nd/5GHU/+vuX/wBDNZ9ABRRU8MElxOkMSF5JGCoq9WJOABQ9NwPT /gz4e+1alc65OhMdr+6gJHBkYfMfwXH/AH0KZ8Y/EgvdWh0O3kzDZfPNg8NKR0/4Cp/NmHavR4ks /h74B+bawsodzHp50zf4sePQY9K+b727mv72e8uHLzTuZJG9WJya+bwC+vY6eMl8MdI/1+PzO2r+ 6pKmt3uVaKKK+kOIKKKKACiiigAooooAKKKKACiiigB2OK6Dw5ZKzT6hNHvjt0LKvqwGf0H8xXP8 8V6Do9qlroMavwJEMkh+o/wxUs4sfW9nTsuun+Zyl14g1G5kJ89ogTwsR2gflzWdLcTTtumleQ+r sTUR6mjjvmmdUKcY6RSQ2iiimWFFFFABRRRQAUUUUAOUlWyDzXUXtxJrHhdZ2w01vLh+eSMYzj8R +Rrl8cV0HhiZWuZrGXmO5jIx7j/62aTObFRtFVEtY6/Lr+BztFT3EDQXEkTfejYqfqDioelM6E7q 6EooooGFFFFABRRRQAteg/CjxEdH8TpYysfs2oEQkekn8B/M7f8AgXtXn1SRyNG6ujFWU5BBwQax xNCOIpSpT2aLpzcJKSPZPjR4eDwWuvwIdyHyLggfw9UY/jkfiPSvF8V9L6FqFr4+8CYusM1xEbe6 UD7koHJHp2YfUV86ajZS6bqNzYzjEtvK0T/VSQa8jI68/ZywtX4qbt8joxUFdVI7Mp9q2/DEZfVg 2AQiMee3b+tYgrqvCkGIp7gjqQgP6n+Yr2KztBm+U0nUxcF2d/u1LHij/kFL/wBdR/I1xtdZ4rb9 xbJk5LN+gH+NcmKnDr92jbPZXxsl2S/ISiiitzxwooooAKKKKACiiigAooooAlicxyo69QwI/CvR 0YOiuOjDIrzX0rv9Jl87SrZ+PuBePbj+lcmLWiZ9Nw5UtOdPuk/uOc8TReXqgkB4kQEn3HH9BWFX VeLIyYbeUDgMQT9cEf1rla2ou9NHl5tT9njJpdXf79RKKKK1PNCiiigAooooAK+3fAv/ACT3w1/2 CrX/ANFLXxFX274F/wCSe+Gv+wVa/wDopaAPjLXf+Rh1P/r7l/8AQzWfWhrv/Iw6n/19y/8AoZrP oAUV3vwp0M6t4vjuZEBt9PXz2z/f6IPrnn/gNcHivoL4R6RHpng37e6hZr92lZiMERqSqg+3DH/g VeVnWJ+r4STW8tF8/wDgXOjDQ56i8tTB+NWuYSw0KKQ5ObmcDpjkIP8A0I4+ledaZ4cfUNPNz5wT dny1xndj19Oai8V6y2v+KL/Us5SWXEeeyD5V/QCptE8QDTYDbzRs8WcgqeV9eK2y/C/VsLCl13fq 9zkzCpVmnKjvf8DEkhkhkaORWV1OCD2NQ8g812P/AAkOnXN2pGnqzswAkkC59OuDWN4jgSHW5VRF VGCsFXjGQM/rmu1MxpV5ykozjZ2uY1FFFUdIUUUUAFFFFABRRRQAUUUUASxo0kiooyScAV6Pqr/Z 9IuSny7Yyq84xkYrzq3bZcxMegcE/nXXeK9R8q1FinLygFz6KDx+ZH6e9S9zzcbTlUr04rz/AEuc Uepoooqj0gooooAKKKKACiiigBaKO1aOl6ZLqtyYY2VAo3MzdAM//XpClOMIuUnZIzs1r+HY3fWr cpkbckkemDWyvgyMA77tm9MR4/qa2NP0i00qMtECWI+aVzzj+g4pOSPNxGY0XTlGDu3ocXr8Rh1u 6GAMtu49wD/Wss1r+IL6K+1RpIR+7VQgbGN2O9ZApo7qHN7KPMtbISiiimahRRRQAtHvRVuys5L6 7jt4sbnOBuOAOMmkDaim3sT2ui6jeQia3t98Z6MWUZ7dzWjp+gS28xuNTiVLaJSxBcHd6Dg0/Vbk aVaW+nWV0wlQlpWRyOfTj8eKwJLieYfvZXfJz8zE80tWckXWrJtNKL8ne33nsXwp8RWD6nd6RBbm 3MyecgLcMy8ED3wc/wDAa534w6J/Z/iiPUEAEWoR7uBjDphW/TafxNcf4c1ZtD8RWGpqTiCZS4Bw SnRh+Kkivb/ixpqap4Ge8iIdrN0nRlOdyn5Tz6YbP/Aa+err6nmkKq+Gpo/X+rHrUYqWGcF9k+eu 1d7o0Ag0qBe7rvP481wI616LYjbY24IxiJAfyFezin7qR7HDkE60pdl+Zg+LXBNqncbm/PH+FcxX R+K8G6hGeQhz+dc52rWh/DR5+cO+Nm/T8kJRRRWp5gUUUUAFFFFABRRRQAUUUUAL1rsfDFyJLBrc n5o2zj/ZP/181x3WtbQbo22qICcLJ8jfj0/XFZVoc0GellWJ9hioyez0fzOp1a0F5psseMsBvX6j /OK4E9a9Mrg9YtBZ6lKgGFJ3L9Dz/wDWrDCz3ievxFhvhrr0f6GbRRRXYfLBRRRQAUUUUAFfbvgX /knvhr/sFWv/AKKWviKvt3wL/wAk98Nf9gq1/wDRS0AfGWu/8jDqf/X3L/6Gaz60Nd/5GHU/+vuX /wBDNZ9AEigswVQSScDHevpPWyvhj4Y3EQGw29gLcEdnZQgPA67jnpXhfgbTxqfjXSbUruXzxIw9 VT5z+imvVfjTqAg8M2liCN1zc7jzyVQEnj6sv+TXz2bfvsZQw/nd+n9JnZh/dpTmeDnrRRRX0Jxl 3TYjNqVtHz80ig49M1c8SOX1qfIIxgYPpgVY8KW6z6rvYj90hcD1PT+v8q2dX8ONqN79ojmVNwAc EZ5Hf8qm+p59XFU6eJSm7WX5nDUGuvXwZGM7rxvbEWP61z+p6e2nXrW5cNgAhgMZB9qdzopYqlWl ywd2Z9FFFM6AooooAKKKMGgAp6ruYDIGTjJ6CmVLFE8sqRqpZmIVQO5PSgTOjnGmaE0arAbu6Cht 7NhQexx/n61h3t5Lf3TTzHLuenYDsB7Vr+JvLiaytuDPDCEdx34GP6n8a54dR1qUc+GinFVHq31Y 2iiiqOkKKKKACiiigAooooAX1rp/BxH2u4GRkoDj8a5jtXR+D/8AkKTf9cT/AOhLSexy41Xw8jW1 zX5tNu0ghjjYlAxLZOMk8YB9hXO32v3t/GY3fZGeqoNoPsak8TuH1uUDooUdevAP9axcflSSIwmG pRpRly62uNoooqjtCiiigAooooAWui8Ix79Ukcg/JESD75H/ANeudro/CEmzUpYyR88Rx9QR/wDX pPY5sZf2ErdjH1BDHqFyh5KyMM/jVStLXI/K1q7XB5ctz78/1rNoRtSfNTi/JCg19J+EJ18T/Da3 gmcky2r2cpOSeAUyefTB696+a69q+CGpM9hqmmM3EUiTxgn+8CG/9BX868TiCk5YX2sd4NP9Dtwk rT5X1PHprWW3vZLWRSJY3MbL6EHBH516FGgjjVAchVAzUHi3Rlt/ilfBF/dMVuzk92AJ/wDHyas1 1SrKtThNdUn959Nw/QdONSb6u33f8Ocf4ocNqSgfwxgH8yf61hVf1W5N3qU0oOV3YX6DgVQzXfTV oJHzWOqKpiJzWzbEoooqzkCiiigAooooAKKKKACiiigApykhsim0UAei6fc/a7CGb+Jl+b69D+tY niq3JjguQOQSjH9R/Wk8K3RKzWrN0+dB+h/pWtrEIn0m4Urkhcj2xzXAl7Osfbyksdljb3t+K/zs cBRQetFd58QFFFFABRRRQAV9u+Bf+Se+Gv8AsFWv/opa+Iq+3fAv/JPfDX/YKtf/AEUtAHxlrv8A yMOp/wDX3L/6Gaz60Nd/5GHU/wDr7l/9DNZ9AHoXwetPtHjlZcKfs1tJLz74Tj/vv+da/wAcLvfq 2k2e4fuoHl246b2xnP8AwD9Kk+B1sGvNZusjMccUeMf3ix6/8Arnvi1dGfx7dRHdi3hijGTnqofj 0+9/Ovnl+9zt/wByP9fmdnw4b1f9fkcHRRRX0JxlyyvZrC4WaF9rAY+o9DXQReM5QuJLRS3qrlR+ WDXJ0tKxjVw1Kq7zjc77Q9bfVpZ1kjVNoUqFz75/pXMeIZhLrdyVOQpCdc9AAf1zVvwlOqalJEzA eZH8ue5BHH5ZrO1OwvLSZ3uYmXexO7GVJPoaSWpx0KMKWKlbTRWX9ehm0UUVR6Q6ko681q6Ppb6n dBcFYl5d8dB6fU0iZzjTi5SeiDStEuNUbcoEcKnDSN0+gHc12Mek6bp9kweGNo1G55JFDE47/wD6 qlubq00eyUthEQbVjXqT6CuK1TW7nU22sdkAPyxqePxPc1OrPHUsRjZXXuwX9feXv7W0SN8rpQOD xnH8qc3ie3hDfYtNiicj7+AP0A/rXM4ozVWPR+qU+t36tk9zcSXUzyysXdzlmqDvRRTOhJJWQlFF FAwooooAKKKKACiiigBwrq/DsK6dZ3GpXIKJswmf4hnP6kDFUfDljHcXUlxOu6G3XcQRkE84z+RP 4VU1PVrjU5iZG2xg/LGv3V/+v71L10OStetJ0Y7aXf6Ip3Vw11cyTP8AedixqCiiqOpJJWQlFFFA wooooAKKKKAHA84rX8OSiLW7cnoxK/mDj9cVj1saVpjyOl3cN5FqjAmRjtz7L71LMq/L7OSk91Ym 8VxeXq+/j94it/Mf0rBFaetXq3+pyTR52DCrn0ArM6U1sLDxlGlGMt7C16J8Hb77N40NuxOLu1eM Ddgbhh8478K35mvOxXQeCr5tO8aaTcjOBcKjYP8AC/yn9GNc+Npe2w06fdM66OlSPqel+Nbi3u/F EskOMxRLA7D+IqWJ/Ldj8K4/WbtbTTZTn55BtUe5/wDrVqTStNNJM5G52Lt9TzXBa1fm/vWKk+Un yoPb1/GuLBYfljGHSKR9pmGIjgcJ7OPxPRfqzNzknNHfFW7Cxe/uhDGQpwSWPQAUX1lJY3bQuckc hh3HrXq8yvy9T4z2FT2ftbe7e1/MpUUUUzEKKKKACiiigAooooAKKKKACiiigC/pd0bPUIZs/KDh voeDXc3ahrKdTxmNhn8DXnIrvNFuvtmlxFjl0+Rs+3T9MVy4mO0kfSZDX5lPDy66r9Tgm+8frSVJ IpWRgeCDg0yuo+ckrMSiiigQUUUUAFfbvgX/AJJ74a/7BVr/AOilr4ir7d8C/wDJPfDX/YKtf/RS 0AfGWu/8jDqf/X3L/wChms+tDXf+Rh1P/r7l/wDQzWfQB7P8DYnEGtzEfu2aBQc9wHJ/9CFcT8T5 El+ImqshDAGJePURICPzBrvfgh/yB9V/6+E/9Brzf4g/8j5rP/Xwf5CvnsJrnFd/3V+h21NMPH1/ zOZooor6E4gooooAeCQcg81v6Jqkk1wtjeSGa2m+QrIc4PbB69cVz/rxT43aORGQ4YEEH0NJmdWm qkWv6Rcu9OlttSayVSzb8R/7QPQ1sDQbCxQNqt8FcjOxOv8AIk/lXTWgF1Bb3ksKicxj5sDIyO1c 54m0eQGXUlm3qSNyt1XoBj9Km9zzIYyVWaouXL3t1f6Fc3vh+AfurCSU9zI3X9f6VetvFWnQQkJZ NCx52Rqu0n68fyrjqOKqx2zwdOatNt/NmlqupyapdGV/lQcIo6KP8azR6UUGg6YQjCKjFaISiiim MKKKKACiiigAooooAKKKKACiiigDsvBoH2W5OBncBn8K5vUrNrG/mhPRW+U+o6j9K6Xwb/x6XP8A vj+VVPGUO26tpcffQr+R/wDr1PU8qjVccdOHf9EcvRRRVHqhRRRQAUUUUAL3paSrtlp1xfMREo2r 9524VfqaQpSUVeTsimoORXSeLTtvoI14jWEYA6Dkjj8hUEWgQ7h5ur2SnvtkBx+op3iaWCa6gMU6 zMsQVmTkHk/rS6nK5xnXjy62v0fkc9RRRVHWLWt4baJPE+lNOdsIvIjIfRd4z+lZNXdJ/wCQzY/9 fEf/AKEKmfwP0Kg7STO31IvFYXOFIdUYY6Ecf0rzxuD+Ne0eMtKNnrVwPLxBdZdCO+fvD888fSvH rmB4LmSEj5lYqeK4cvqxq01KPU+hz5OoqVVbNG1omLXTb2+IwQNiH0/ySKta3Et/o8V8g+dQCcDq D1H4H+tQ6kv2Dw7bWpB8yQ5YHr6n9SK1NKhMmgQwy9GjYH8ScfpitJSs/aef4HRhqTnF4J/y3fk2 7/qcJRT3UrIynjBwabXYfKtWdhKKKKBBRRRQAUUUUAFFFFABRRRQA6t/w1d+Tetbs2FlHGf7w/ya wO31qaCZ4J0lU4ZGDD6ipnHmi0dODruhWjUXR/h1LGqwfZ9TuEAwN5IHseR+hqjmui8SxpIlreIP 9auCfyI/ma5w0qcuaKLx9L2WIlFbXuvR6oSiiirOMKKKKACvt3wL/wAk98Nf9gq1/wDRS18RV9u+ Bf8Aknvhr/sFWv8A6KWgD4y13/kYdT/6+5f/AEM1n1oa7/yMOp/9fcv/AKGaz6APbfgfIh0vV49w 3rNGxHoCpx/I1558RInh8fausgwTMGHPYqCP0IruPgV93Xv+3f8A9qVx/wAU/wDko+q/9sf/AESl fPYTTOa0f7q/T/M7KmuGi/P/ADONooor6E4wooooAcBk471u6d4du55Y5LmIxW5ILFmwSvfjrVHS GSPVrVpPuiVc57c9ateIpZv7YnjeRiqkbRk4AwCOPxqTCpKbn7OLtdXua+q+J/IkNvYbWKnDSHkf Qf41laj4iudQtjbuiRocFtmfmx9fesTjPNJ36U7IilgqNO1o6rqJRRRTOoKKKKACiiigAooooAKK KKACiiigAooooAKKKKAOv8Fv8t4hPAKED88/0qTximbS2k29HI3fUf8A1qpeDmAvrhecmLP5Ef41 q+LF3aN1xtkVv0I/rUdTw6nu5gn3t+VjhKKKKs9wKKKKACiiigBR6V2+k2EMXhtxfIFjlPmN8xB2 8Yzj6ZxXI2bxR3kLzIXiDguvqM11Piu5lNlb+U/+jzcnH8XQj8KlnDjOac4Uo6Xd7+hx7Ebjtzjt k0yiiqO4KKKKAFrR0SJ5te0+ONSzvcxqoHclhxWd2ra8I/8AI56J/wBf8H/oxairpTl6MqPxI90+ JtzBY+GY7qZELLcoqk/e5znH4DOPb2ry/wAzTJH+2F7YsAPnJGR6fj+td78auPBlp/1/p/6Lkrwb JxjtXg5DR5sGpX6s9xZpPDN03FSW6v0Zq6xfjU75fLH7tflQdPxrsokEMMceRtjQLn2ArmPDumGa UXcq/u0PyA/xEd/wrZ1nUIrKzdCczSqVRR27ZNenVs2qceh6WXOVOlUxtd25vyX+fQ4mdg8zsM4L EioqCckmkruPkZO7uFFFFBIUUUUAFFFFABRRRQAUUUUAFFFFAHTXp8/wpay/xIQM+wyv+Fc2Rg10 FoRP4Uuo+C0bZHHQZB/xrnyaypaXXmejmD5vZz7xX3rQbRRRWp5wUUUUAFfbvgX/AJJ74a/7BVr/ AOilr4ir7d8C/wDJPfDX/YKtf/RS0AfGWu/8jDqf/X3L/wChms+tDXf+Rh1P/r7l/wDQzWfQB6l8 E7ny/EeoWvaW0353d1deMd/vH8qq/Ga18nxlFN8xWe0RskcZDMCAfoB+dZvwsuha+P8ATwxULMsk RLe6EjHvkAV13xxtAU0a8VR/y1ids/7pXj/vqvnqn7rOov8Anj/n/kdi97DPyZ43RRRX0JxhRRSg EnA60AOUncCK6DxJG0gsbwj/AF0Azj1AB/8AZhUUXh+SJElv7iK1jbBIZvnx7D1rQm8Ux2rJBZQr JBGgRWYkE4FScdSq5Ti6S5rXv2+85pbO4kICwSEnphTzVhNE1Jz8tlKP95cfzraj8YyA/vLNSP8A ZkI/oad/wmg/6B//AJG/+xp6kSrYv7NNfeZyeFtUbOYUT/ekH9KmTwjqLDJe3X2Ln+grQHjKAgbr Rwe+HBqZfGFkV+aGcH2Cn+tK7Od1sf8AyL+vmYr+FNSUnCxNj0fr+dQ/8Izq3/PqP+/i/wCNdA/j CyC/JBOx/wBoKP6mov8AhMrf/n1k/wC+hRdjVbH/AMi/r5nPnQtTB/48pP0pP7C1P/nzl/KtxvGa 7jixJHvLj+lRP4ymJPl2ka+m5i2P5Uamqq41/YX3mHLpt5B/rLWZfrGcGq4jdiAFJJ6ACt1vFmoF wwWFQP4Qpwf1zS/8Jhff88Lb8m/+Kp6nQp4hLWK+/wD4BiiyuWIAgkJPAAU1KNI1AnH2K4/79t/h Wr/wmN7/AM8Lf8m/+KqQeMrjjdaxE+oJFGpDqYnpBfeZf9hanj/j0k/Ki60W/sofNuICkecbtyn+ RrVPjKbtax/ma35iNS0B3cLmWHfgdA2Mj8jU3ZzzxWIpOLqxSTf9dTziilIOTxSYPpVnqBRRg+lL g+lAGnol39j1aCTPysdj/Q8f/XrpfF0wTS0i4y7j8gD/APWriQCCDXReKpGcWIZif3O78TjNS9zg r0VLE05+v4HNUUUVR3hRRRQAtFFWLS0mvbhIYULyN0FAm0ldi2drJeXSQQrudzgf412eraLcXlla WkLoBCuGd8jOAAOmfelt7ez8Nac08pVpiPmbux/ur7f/AK6y5vGNwzHyrWNfTexb/Co1ex5VSrXx FRSoL3Y9X3Mu48P6nb4JtmcHvH838qp/Y7gdYJf++DWmfFepE/eiH/AKP+Er1P8AvR/98VWp1xli kvein82ZP2S4/wCeEv8A3yaPslx/zwl/75Na/wDwlepf3o/++KcvivUUbJ8ph6FeP0NGpXPiP5V9 /wDwDNGlah/z5XH/AH6b/Cuv+Hmg3beO9La5tpEiiZpSxHAKqSP/AB7FVrfxhblQLm3dD6phh+Rx Xo3w0vLbVL+9ubdi3kRKjArjaWPH/oB6V5+aVnSwdSXlb79P1Fhq2JliIwlCyuZ3xuvgtnpNgHOX kkmZd3TACjI/4E35H1rzTR9Ea9/fT5SAHj1b/wCt711XxjvhceM4rdWytrbIjLnOGJLH6cFaZYMj 2EDR427F/DjpXNlydDL6aW71+93PqsuwtPFYuTqaqPTuUtV1NNKt1hgRfMI+QY4VfWuQuLia6mMs 0jO57mui8U2pYRXS5IA2N7dx/X9K5avToRjyXW5jnVat9YdKWkVsug2iiitzxQooooAKKKKACiii gAooooAKKKKACiiigDovDpMsF9bDOZI+Bn2I/qKwHyGIPrWloFx5GrQjOFkOw++en64pdetPsupy YGFk+cfj1/XNZrSbXc9Gova4OE19ltP56r9TJooorQ84KKKKACvt3wL/AMk98Nf9gq1/9FLXxFX2 74F/5J74a/7BVr/6KWgD4y13/kYdT/6+5f8A0M1n1oa7/wAjDqf/AF9y/wDoZrPoA1NEv20rXLG/ UkG3nSU9eQGBI47Yr3b4r2P2/wABTzId32aWO4XbzkZ2n9HJ/CvnfFfSehEeKPhdbxPh2ubBrdie 7qCmeR1yM59a+ezz9zWoYr+WVn/X3nZhfejOHdHzVRUkiNE7I6lWU4KsMEGo6+hOMXpU1vMYZ45A AxRgwB6HBzzUFFANXVmdH4hge5EWqwsz28yD/gBHGPz/AFzXP1u+G7/y7kWM4D28/wAhRumT0/Pp UWu6OdMuN0QJtpD8hJ+6fQ1K7HJSqezn7Cfy81/mjEoooqjrCiiigAooooAKKKKACiiigAooooAW um0jX4bDS3gnVpHVjsTsQeoJ7c5rmKUUNXM6tKFWPLPY6P8A4SLT/wDoB2/5r/8AE0f8JFp//QDt /wA1/wDia5yilZGX1Sl5/e/8zoz4ltlGYdIgQ9zxyPwUUn/CTj/oG235VztFFkH1Sl2/F/5nTQ+J BJMif2fajcwGdvqareKZnl1hoTjbEqhQB6gH+tZVmM3kIH99f51qeKVC605A5ZFJ/LH9KVtTONKn TxEeVdH+hhUUUVR2hRRT1UuwVRkk4AoAfHG8sgSNGZ2OAqjJP4V12jWo0O0mvNQxG7gBVyC2OuB7 k4/Ko5VTwvYRlI45LybI8w9AB1x3x0rmbu9uLyUy3ErSN6sen0Hap3OKXNiotR0h36v08izquqS6 pdGST5UXhEHYf41m0UUzrhCMIqMVZISiiimUFFFFADs1758G9N+y+EJbxlw17OzA+qL8o/UPXgig u4VQSTwAO9fS9248IfDRhkpLZWAjBB/5bEBQeD/fPY/SvA4gm3Rhh47zkvw/4Njrwi95zfRHgXi7 Vf7a8Wanfq25JZmEZznKL8q/+OgVe8L3gMb2jHkfOv07j/PvXLdantbh7S5SeM4dTkV7LopUlTWy Vl8i8Di3h8Sqv3+j3O/u7dbu0kgbgOuM+h7H868+miaGV4nGGUkEe4r0G0uUvLZJ4/usOh7H0rn/ ABLp21hex/dbAceh7H/P9a58PPllyM+hzzDKvRjiaetvy/4BzFKBzU1rA91cxwJjdIwUZrT1PQpL CMSq/mx9GIXBH1Fdjmk7NnzFPC1alOVSEbqO5iUUUVRzhRRRQAUUUUAFFFFABRRRQAUUUUASIxR1 YcYOa7HV7VdT0lLmPiRF8xcdwRyP8+lcXXZ+G7nztO8on5omx+B5H9fyrCvdWmuh7eTclWU8NPaS /FHGYoxWtrlgLK9OwYjf5l9vUVlelbRkpK6PJr0ZUajpy3Q2iiimZBX274F/5J74a/7BVr/6KWvi Kvt3wL/yT3w1/wBgq1/9FLQB8Za7/wAjDqf/AF9y/wDoZrPrQ13/AJGHU/8Ar7l/9DNZ9AC5r2n4 K635tlfaHIRuiP2mL1KnCsPoDt/76NeLdq3/AAhrZ8O+KLHUSxEaSbZsDOY24bjvwcj3ArhzPC/W sLOmt916o1oT5KikbPxR0IaN4xuJIlxb3w+0Jx0J+8P++sn8RXEV9CfFbQjrPhH7bCokmsD54K85 jI+fH4Yb/gNfPfOaxybFfWcJFveOj+ReJhyVH2Y2iiivUOcljcxyK6kgqcgjsa9IQQ6vpS+YoKTR gkDsfb6GvM66/wAKap8psJDgjLRnPXuR/X86mSPOzGlKUFUhvE5/U9Pl027aCQZHVWHRh61RP867 3xRai40hpSPnhYMOOx4P88/hXA9KE7m+DxDr0lJ7rRiUUV7R8QvCuh6X8FfCur2WmQQX919k8+4Q HdJutnZs/VgDVHUeL0V6nN8BfGUWofZVOmyL5fmCdZ2EZb5vkG5QS3y+mORk1ofDT4Qx65quoHxK 4SPTbpraWwim2yPIuCd2B/qyG4ZTk849aAPHKK7uw+Fev6n4ov8AQ7GfT7j7AsbXF8k5+zIHXcvz Yye44HVT6VV8S/DnXvC2mRanex28+nySGMXFrMJUB7ZI6A4P5Y60AcdRXqGl/ArxbqmiWWqQyabH HdokiRSzsJFRuQzAIR0IOASfbPFUrD4Qa/qHi/VfDcV5pq3umRxyTO8snlsHVWG07MnhhnIFAHnl FehXHwf8VQ6/ZaIi2c99cW/2h1imJW2TIB80kAA5PbOe2aZ4j+EniHw5osurNPp+oWcD7J3sJmkM PTlgVHqOmcd8UAcBRXuXij4L6fofw1TULbULZ9WiAurq5muCInRYnZo4AFw2Tt25GTjqM4rN8a+B nuJ/BmmWOjaRpNzqiSKs0F3JIJiFjOZMxLtxntu+8fTkA8for09/gV41S4vIY4LKY2wG1kn2ifKg /JuAPcjLADKnnisnwh8LPEfjWwub7TltYLaCQxb7qQpvcAEqoCk8ZHJAHPXg4AOGors/Fvw31vwX pNhqOrSWgF6dqQxyMZI227iH+UDI6cE81f8AhR4Bj8deI5EvXkGm2SLLceX1kJOFjz/DnDc+inHq ADitJ/5C1n/12T/0IVp+LEK6uCf4owR+o/pXsmjN4AvdXurHTPh5qc+m20rQR6tbQS3AMoPOSCSo 5BBJJwRkCrvgPwhoet+IfEMGsaR9pFolusCXsZWRAzTdRngkBc/Sl1OWaaxEX5M+bqK9o+EvgXw/ 4j8K6jqs1j/a+s2s2xLGe4MMK8KUJK8nPzdeOCMcZNH4qaL4d0nSrBofDF9oWuStmZVBe0cAYZVc tgkHBG0eu4cg0zqPJTUsUhSVHAztIP5V2Hwp0qy1r4l6Rp+pWsdzaTed5kUnRsQuwz+IBrrvEPwo u9f+KGv6X4bgs9PsrNIHRZy6RkNEmQpCtk7iSaBO2zOB8XSF723w2U8kMv4k8/oK5vtXpXi74c+J tM8K2mt3tpCtvbQolwqSgyRZIA3D6kA4zg57V0Xi/wCD2n+HPhfFqcF7DNqqNHNcXEk58t02Nujg AGGyxUjIyQpOR0pIyw8eSko9jxKiu60D4TeMPEdgl/aaasdpKoaKWeVUEgPQgZzj3xiuX1nRtQ0L VZ9O1O1e1u4Th43A49CCOCD2I4NM2M2ivZ/hl4E0AeEL/wAc+KY2vLK2SQxWijghAdxIONzE8KMg Dv7a8/hjwJ8RfA2r6t4S0m40y+0xXKo4EfmELvAIDMpBGQDkEHrx1APAaK7K7+HWr2fhTR/EElzZ Gz1a4jggRXfzFZwxBYbcAfIc4J7VpS/CDX4fGtv4Ua70w309mbxZBJJ5QQMy4J2ZzlT29OaAMr4b 6J/bnjSzRwDDbH7TKCMgqhGBj3YqPxr0P4060INIstIjf95cyedKB/cXoD9WP/jtdD4B+Hl/4HtL 2TVntGvLmXYogctiNM4OSB97OfptzzwM7RvDWk+OfEuv+LfEEryaJosjW8UGcJIIl3MWOfujO7Ax ndz3B+daeLzbX4aa/F/1+B2Jqnh9N5Hz7RXrWsah8JPEGlaq1nY3Og6jCn+hOFdhcHnA2KWVemDn H3s5PblvDPw08VeLbRbvS9PBs2JAuJZVjQkEjAycnkHoK+iOMytD1T7DMYpifIk6/wCyfX/GuudI 54WRgGR1wfcGsuw+F/iW68XDwzPBFYag0TTIbpyI3Re6sgbP4V2Vn8KfG+naUJpIrS7VWC/ZIZ/3 6DPXkBcYwcbs4I6dK5q1FyfNHc+hynNY0o/V8R8PR9vJ+RwNtocllrMLAl4NxIYdRgEgGuhkZAAr kbZDsAYcEntXT6z4H1bRPshujA8V1IsUcsUhZQx6A8A+v5Gp9V+DviW+tJ7eKWxEqAPHmZgJCOSB 8ufbJwMkc1i4zqSSkj1oV8HgqMpUpJp3aV99lY8q1rQvKD3VsP3XVk/u+49q52vaLf4e+KbPww+o 6pBCrQhvNh8zdKijuwHHTngnjmuT134banpuk6frv2iy+xapdJb28as/mIzhiNw24AG09Ce1dNKU k+SfQ+fzGlh5RjicO9Jbrs9zgaK9El+EGvw+Nbfwo13phvp7M3iyCSTyggZlwTsznKnt6c0zUfg7 4t0zw/eaxcWtv5VoGaaJZsyKi9X246Y+brnHatjyDz6ivXb3wX9u+G3hVodL0XT59Ru44hqj3j73 ykp/eL5QCg7eoZug9eLfxA+FFh4TXRZ9NngnjEscVxHdzkTXLs4wQoXATHHHQepoA8Xor1fx94Ev 7r4i6doGjaBYWFzcWKyi3sbppYsB5MyM7om3hemOwxknFZOufCHxNomn318RY31tYjNw1jceYUA+ 8SpAbjnPHGCelAHn1Feg6X8J9bv9DstUu9T0TSYb8j7ImpXZieYEAqVAU5zngZz7dK4/WNKn0TVb jTboxNNA21nicOjcZBVh1BBBoAzqKKKAFPStrw7ci31IIxwso2n69v1rGqSN2jkV1OCpzmplHmi0 b4as6NaNRdGdvrNiL+xYKMyx/NH7nuPx/wAK4QnrXotncC6s451x865IHY9x+dcfrtl9k1F9oIST 5l/HqPzrmw8mm4M+gz3DRnGOLp7Pf9GZFFFFdZ8wFfbvgX/knvhr/sFWv/opa+Iq+3fAv/JPfDX/ AGCrX/0UtAHxlrv/ACMOp/8AX3L/AOhms+tDXf8AkYdT/wCvuX/0M1n0AFFFFAH0N8LfEI1/wmbK 6xJPY4gkDDO+Mg7CfwBX/gPvXjfjLQW8N+J7zT1VhAG3wFu8bcr9cdM+oNXfh94l/wCEa8U280r7 bO4/c3GegUnhv+AnB+mfWvT/AIt+GG1XQl1a2j3XVgCZMdWh6t/3z1+m6vm4/wDCfmbi9KdX8/6/ M7X++o36xPAaKKK+kOIWpYJngmSSM7XVgQfQioqOhoBq+jPRdYcS6BPION0efzxXnVelafJDqOjR /dZWi2OvocYIrgtSsZdPvHgkB45U/wB4djUxPJyySi50numUa9o+IXirQ9U+CvhXSLLU4J7+1+ye fboTuj22zq2foxArxeiqPWPpHX/H3h25+MHhLUYNdgfTLSC6WeUOdkbPGwGfqdv5D0rF8J+PdC0r 41eJb24vohpepBhHeD7gZcMM+xAYfXHrXhFFAHuPw78S+G/BWoeJPC0uvQXFldIj2mqfZ8Qu/lHe HUlsYJAAwQdrZ6gVneMvEkNt4Dm0S08UaLeRXcq50/SNJEMagMr7i+4BeVH8JJ/Mjx+igD6jW98O 634l8EXt4ur6ZrduhjgsZdPlh875QD8zDZsXk/KTw1VbTxJo/hv47+MptZ1CGzjmtrVY2lJAYiKM 4FeQ2Xxf8dafYW9la66Ugt4liiU2sDbVUAAZKEngdSa5DUNQu9V1Ce+vZmnuZ3LyyN1Zj/npQB2v wzk8LXfjK7uvGr27W5geZDcAhGnMi9QvB4LfKQR19BXpWqeLfDI+GviTQ4de0E3UiyNb2+nWbW0I UhSEUYIZjg856nB6V86UUAe3634i8OeL/gfpOlPrlvYappUaP9llQlpmhiaMKMdNwIIPPpj00vEH jTw3deJvhrcQavbPDp3mfbHBOIcpEBu/FT+VfP1FAH0Jo/jnQIvj34i1efW4F0ibTkhgnZz5bMBB 8o/ESfrVPRNa0TV/hV4j0fXJdQsNNOpPImpQWEssTKZVcAuqld27jDEfeXHt4PXT+G/HvibwlaTW 2haobSGZ/MkTyI5AWxjPzqccDtQB618efLHgTwr5JcxbhsLgBivlDGcd68++FPjqLwL4oee8WQ6b eIIbjZyU5BWTHU4549GPU4rA8SeMNe8XzW8uu6g141upWMFERUBOThUAGTgZOM8D0rnqAPo3w1qn g7w34hk1DSPHk0mlXVxLcJokdq5zI6nrxnAwMZAxtGTVrwn478P2HjnxdfanqMdjFefZmtxccFgv mZ6Z/vD868C8MqTr1uQMgBif++TTvFDhtclUZ+RVB/LP9aXU5XUbxKp9Er/idx8O/wDhB7nw9eR6 vqDaF4ijkza6pHPKrBTgggKwXIIII44I/DZ+JvjbR7/4d2PhqLXx4i1WK5WSa++zGMBQGIPpuwwX gngNk56+JgE9KSmdR6Z8G0tbHxpZ6zfTJFb25lQOxICkxMMn/voD8a9N0b4j+Go/ih4juLjVbWLT pYIBBdFjtlYIu4Djscj8K8c0UfY/C08zfxiRxzjttH8q4s9c0kclGTq1J82qi9PuPc7Px1o938Ed Z0+81KCLVZ/O2WzMS7ZYEc9yeeah1vxF4d8X/BDSdKfXLew1TS40f7LKhLTNDE0YUY6bgQQefTHp 4jRTOqMVFKK2R9Dz+JvBXi1vB2rz+Kk0mbw+VllsZLdyXYeWSob0/d4yN2QexrzH4r+JNO8VePLn UtKlMtn5UcSSlCu/C8nBAI5JHI7VwtFAz2f4aeMfD0/gHVPA3ii7FlBOJGt7l+UAbHHsyt8wzwfw 51Brvg34dfDzW9N8O+IG1jUNT3IpQYMZZNu49gF5PqSQK8EooA940fxV4K1n4XaBpeua0dPudGuY bh4hC7s5R2AAwOdyE9M7ScnpzvjxToer/tAaVfadqUNzbf2O1v5keSPM3yNt6ehzXzTXtfwc8MNb 203iG6jw0wMNsD/cz8zfiQAPoexrizDFxwmHlVe/Rd2a0abqTUTs/iX4o/sDQL26hl/0u5doLYjq Cc/N+C5P1x615v8ACHx9pHhuHVtD8RsyaVqK7vNCM6o20qysqgthhgZHTHvkZHxW8Sf214nayhfN pYZiXB4aT+M/mAP+A1wOK58nwrpUOea96b5n89kXiJ80uVbLQ9k1G2+FPhnwbq8Vjerr+o3oJsvN Q+ZAcEL8ygbcbtx6bsAY44s22teEvGXwr0Hw3f8AiVdBvNMmV5fMgZ920OoKnIHO/Oc8c8dK8Qor 1TnPo6f4meF9Q+MWm6jDqIXTbKwlge7lUqjOxzhQRn2zj9OaytG8baLb6X8TvN1qNLnULi8bTyXO 6UFHEZQ/98gfhXg1FAHtWp+LdGPwo8Fadb6rF9ustQt5LmFGIaNAJNxPtyPzrp73x/4ek+Nemagu uwNpEOksjS7j5azF3yPqRt/Svm+igd3a1z37w34w0QRfEWOfVofN1K+uDZBmJM6sHVNvtyoH4Vcu ta8Lap4A0K01zWf7OOkX0Ny8YgeRpdhcBFwP4lPUZ2968K0GAzatFxwhLH8P/r4rd8T/APIKH/XU fyNYTnaqkj2cPhFUy+dSXR3XyX/BPW73xx4Yk+Oum60mtWp06PRTA9yCdqyb5Dt6dcEfnWRpXjLQ 10b4ox3Grw+bqc94bIOxJnVkdU2+3KgfhXhFFbninrfi7xJo198CvDGi2uoQy6ja3MbzWyk7kASU En8WH51q/ETxD4b8XL4b8Swa9DHeWrQrLpxjO9QzhnJbPG3B7H614fRQB9Fan8TPDll8arHWYr9L jTJtHFjNcQqWETGZnyeh4wueDwelU9Z8W2emW/iG90zxh4fVb5nK21jpCtcXQYtgSvlPmG7ljnqx 9j4DRQB7r4H8YWVt4OtLK78ZaZOkeBPpes6YzLBH02xsp+c8HHJGGGQDxXm3xEvfD2o+NL248MQp FpTBAgii8pCwUbiqYG0Z7Y9T3rk6KACiiigAooooA6zwrcFoJrcnlSHX8ev8h+dP8VQbraCcfwMV P4jP9KzPDDEaoQDwyEH3ra8Sf8ghv99a45e7XTR9XQl7bKJRl9m/4ao4miiiuw+UCvt3wL/yT3w1 /wBgq1/9FLXxFX274F/5J74a/wCwVa/+iloA+Mtd/wCRh1P/AK+5f/QzWfWhrv8AyMOp/wDX3L/6 Gaz6ACiiigB3NfQHwr8UJrnh/wDsu6cNd2ShMH+OHop/D7p/D1r5+71t+GteuPDeuW+pW5JMZxIm cCRD95T+H64PavPzTArGYdwXxLVepvQqeznfoanxA8LHwt4ikiiU/Yrgebbt6L3X8D+mPWuQr6X8 RaRYfEDwgjW0itvXzrScDG18Hg+x5BH9RXzjd2k1hdzWlzGY54XMciHqrA4IrHKMe8TR5Knxw0f+ f9dR4ilySutmVaKKK9Y5zU0vV7jS3PlndG33kbof8DXUXawa/oJuVTbKqsy+qsOoz6GuF5z9a6qw nax8ITuxOZXZI+vcAcfkxqWjgxdFJxqQ0ldHJnrRQetFUd4UUUUAezaTonhvwV4S8O6hqPh//hIf EfiAh7OzmfbGikrtGOQc7k6g5yRwM1BDpd5d/E7wsNe8EafokV1OyNbxW4WG5C9cxkkcArn1696r 6Z4v8NeI/Alj4a8UXlzpl7pUmdO1S3gMgjXHG4A7vwGPurzkVq3vjbwxBr3w/ih16TUbbQnm+2X8 lrKm4Nswdpyx+6fWgCx4V8J6Fqnifx6ItGs9Q1fTL+Y6fpk8nlQGMSOMBRgdgvPyj5emc15T4rlm m8Q3K3ei22jXcZCTWdtEY0V+5CknGc5646Y4rq4pvCmqeLPEeqz+Lb7QrqXU5riwvILaSRXiaQsD hQHVucjkVS+Jvi3TvFeraYdOa4mgsLFLU3d2gE1wwJJZiDz1z25LetAF7+yLPxD8INHn0+xto9Ws 9X/s+4mSNVeVZclGcj5mALIo4J4NdN8TNA0XUtLSLw3pFnZz6ZrY0eRoIlV5N8SEPJsHI3gqCcnP TkkVg/CDxdofh+51Ky8SXBh0y48i6jO2RgLiGUOmAgJ64PodgB9KufD3xxoCav4gk8VXjW8F7qMG qW7mN32zxzNJ0jU9cjPQcUAM8beDl134harp3h6307TtL0O1iS5uXCwQR8AlnZV5bLN1yTsPpWZZ /Cm9L6ddTalp93pV9OltFeWExkTzGbaAcqCOfbtipvD/AI2027vfGFjrS3EFn4nl3/abePe9u/mM y5XOSuHPAJ6AAHJrobnxR4d8H6Z4X8KWF+97b2+rwahfag9u0aoiyhiAnLZ49+B3J4DOevup2bL3 hn4Zw+G/ifpPmX1jeASTJLZFg7ovkPtZlI4zwQD6g15/4k8C3Ol2VxrOpXMNjJeXki2Gnsp86dd/ 38dFTnqfb1Geh0zxzpcXx7uPEcuok6NNLIDceU5ynklE+Xbu67R0rZ8YXOleOvDjJqF2sOu2Ez/Y rv7OxF1BkkIzKDg46ZxyAeNxwiFUjS0qS9L9jgfFnw9Pg21dNU12wOqhEkWwgWRmZGbGd5UDjn8q 9G+I3wzk8QePHSwvtKsJ7i3X7HZyEobjYMyEBQduBnGeuG7AmrGp32mf8Ie+nz69P4jv/PVrae8t Nstqg7byMscZBOTnJ6Vq3fijSZfijZ6yt4Tp0UJRpfLfg+Wwxtxnqw7d6LmE8fTjKyaeq69/8jyT wT4L1S7u73UGe1trGwka2nubiTZH5v8AdUgEsenQdx61e1T4Y6ve+PdO02S4tI4dZR5LS8jfzInE cW5umD2Hb+IV12hXmlRaHq/h6+vZYYLvUnvoLxINwXPGHUEE/dHPv2wK6TTL7SdQ8b+ELPTWkuF0 iK4RLhwU3tJEQxC9f4e/r7ZpXVzOOIpOv7RO90l579jhdM+GM+jabqF4upWF7e2n/HzbQNueBRnd z04749COorI0vwxZ3njDRZBFFsN/B58Ei7o5U8xdwIPHIzx0NdNqfjbwzpNt4vuLTV7yfUdUjmtY 9Oe1MbW7sWBcyZKtgknrnGBjOTXD+G/HMkPiLTLnV9rIl5FJNcjIKqJAWYqAckDnAHP1osE6Fb2n toO3dHrHjLw5pp1rRbjStPtU09dZttPv7SOFRGo81SCUAxtYEA/UeprzTxD4JuNZ+I3ia20mKx0/ TdOl3zTSkQ29shwBkgYHcgAdjiu2T4gaXpvj5tUluRP4a1GT97J5bkKy7XilCYzlWTHTIyeMisD/ AITnw1ca/wCObG8vLhdK8ROnk31vbkmPZnBZTtbHPTH8zTOrDWcW0rXbv+Rycvw41CC70fff2Eul 6tcLawapayGWASHja3AYHORyB0PoaF+HeoDUfFNrc3McEXh2J5J5mQkSc/IFHq4GRk1q+LPEXh2x 8A6X4R8Nalc6k1tfG+l1AwtAofawCqrfMPvfht6nPGp49+IGh614Kjj0t/8Aid6x9nfW/wByV5hT AXO0A/Nggg9F7ZpnQYGmfDCa907TZbvX9M0+/wBUjEmn2NyWDzq3CHOMDceB17VRs/h9ql14VvNc e4trSOy1FrC7iu38swFVBLNnrgsF2gFs9BXoWk/E6C60DSLWHx1c+F5LGyjtZoH0VLuOVkUDejAE jI7H04A78pdeK9Nufhbr2lXOpfadZvdfa+/1DJ5yEJmTgbVyQ3y549KALP8AwpPWI72Oym1nR47u 7JGnReazfbVVd7MpCnaAvcjr+BOl4U8Lw6x8E9Xt7u4stNkg1s+fe3mFEKLHFlc9eWOAB1Jqy/j7 w43xa8I63/ahOmafpAt7mXyJcRy+XMCNu3J5dOQCPyqv4e8ReFdQ8A+IPC+p6xPZzatrLzQNDaST EIfLKMVA5BZMbc59u9AGFF8KNQPjTS9Eju4L2yvoFu0vrU5QwZ+Zhnv27/eX1r1rx7K/g74f3E+j KrLCEtUMKnFsG+UOfTHQH+8R610OlNp/hfQ9OtROZLTS7Uq1zIgQ4xlmwfujjoa8k+JPjq217Q7y LTfHX2y0uWiH9jnSDEQoIbJmIzkMoPH06V4rVHMq2usYP5dP667HSnOjHs2cr40+Gt74LSeXUdX0 6STcvkQLKfPnU4zIEPRQSRknOVPGKyvAsfhyXxJEPEiXM1rgCG3gHE0pYBVc5BC8knHp+ep8XPEO l+J/HcupaPdfabRreNBJ5bJkgcjDAH9K5HSZo7bWbG4mbbFFcRu7YzgBgSeK9o5jufiH4aF58aL3 w9oVlb2/nS28cEMMYjjQtDGScKMAcljgeprrPiroHhrSPhjYxaJZWn2iy1RNPuL1IFWWZ0ik8zc4 5PzDkE9R7Cud1/4kx6Z8X9X8V+G1s9QiuIY4oZLuCTaB5UasyjKsrZQrn0J9al1v4g6Rq/wkj0oW OmxatJqLSSWkUEwWJSr/AL5WZiN5JA5Y/ePFAHm0Wl6hcW/2iGxuZISCfMSJiuB15Ax2r1H4JaZ4 Q1PVzbarZPqGsSGQxwzxK1tHEqg7iD95iSRyOPbrXnVt4o1+xsBp9rrmp29kFZRbRXciRgMSSNoO OSTn6muj+EfiHS/DHjuLUtZuvs1otvIhk8tnwSOBhQT+lAGx8ItJW90zxVqC6Vpep3lnbwJaQalE jxmV2bHLkAfdx1HUVhfEaHWbfWLe31rwxpWgypEdiabbiKOZSfvZVmDH8eO9ZPhnTfDmpC6j17X5 dGZdhglWza4Ruu4MFIIP3cfU16Fdf2X8TvEvhrwfotxdjRNFtJFa/uAPMKhVy2D0HyIo+vQAUAcL 4ViXZcTH73Cj2HU/0rplvLCwilutQ0WLVkjTMVvLM0aB8j5jt+9gbuD6+1czo1zb2+s3dnbStJaO 7CB3GCwUnaSOxK16R4Kl8P22sm68QTbYoAHhQxs6u+e4UHp1xXDUuq1z7HB8lTKnFJvRppb3/qxT 8beFLK8PgVDpNlo+u65Jsu7WxBSNUZkCtt52EBvT+8OdtT3mk+F9fh8caRa+HbfTZvDkM0tveQux kkMJYEODwQ239fWqvjDUrK18baZ4zPiqbVriLUIW+xRWD24itlYsVR2bGO2O+8k96k1LxL4O0S38 Z6louvy6ne+JI5IhaNZSRfZ/NLFyXbAbG44x7deTXammro+RnTnCXLJWfmSaNpHhzTr3wf4W1Hw1 bX0+uael3c3skrLLH52/aFxjG0KP8e9YGhLZaL4wu/Clp4VsNd1T+1ZbWG71F2ZPKVtmDGPlGArt v5xnp8tdBp/ijwVfX/hPxRqfiG6ttT0PTo7WbT2snla4eINgiQfKNxYnk+mcc07wV4t8HWQ13xHe azHpfirVbmd45ZbGW5S0R33fKqjBJyerdh2yCyDhvinpWkaL8QtS0/RY1itIvLJiUkrG5QFlBJPc 9OxJHauKroPFkGmQ6y0mm+I319bhTPPePavAxlZm3AhyST0Of9r2rn6ACiiigAooooAKKKKAN3wx GW1MsMYVCT/L+tbPiVtukn3dQP1P9Kz/AAnHmW4lwPlVVzj1/wD1VY8VylLOCHszlvyGP61xz1rp H1OG/d5ROT63/F2ORooorsPlgr7d8C/8k98Nf9gq1/8ARS18RV9u+Bf+Se+Gv+wVa/8AopaAPjLX f+Rh1P8A6+5f/QzWfWhrv/Iw6n/19y/+hms+gAooooAKKKKAPSvhf42/sO/XSL+b/iXXTjY7HiCQ 8Z9lPGfTg8c11HxX8FHULdvEGnw5uoV/0pFHMiDgNgd1HX2HtXh4r3H4afEJNRih0LVpdt6oCW87 t/rx2Vif4/T1+vX57MsNVw1ZY7DLVfEu6/r/ADOyjUjOPsp/I8N6UV6x8Tfh99hZ9c0e2xanLXME f/LI/wB9R/d9R2+nTyivZweLpYqkqtN/8B9mc9SnKnLlYmOa6C/XPhPTimdoZg3+9k//AF65/PNd FopXULG40qUgbx5kJPZh1/z9a3Zx4jRRn0i7v02OdpKnngktpnjkQo6nDKe1Q96Z0Jpq6EooooAK KKKAFqxaRrNdxRudqPIqk+gJqvTlYowZSQRyMdqBNXVkeh3ltp1jYjzLOMwBgGwoO3Jxn1rPl8KW FyqS2tw0aPzx84I9u/8AOrgkXXPDsm05kdMMB/eHOPzxXM6Pr0mlq0ToZYTyF3Y2n2qFc8OhCu4S dOT5ovVd/vNe8aw8NRqttAJbphkNIclR6n/62K5W7upb25e4nbdIx5NPvryS/vHuJOrHgZ6DsKq9 McVSR6uHo8keaesnuxO9btj4lvbKBYSEkRBhQ4OQPQEVhUUGtSlCouWaudK3i+7LfJbwAehDH+tS QeMZlb9/aoy/9MyVI/PNctRRZGDwOHatyHdDxZpzIWYTKw7bBz+tMk8bPZJHcaRNNb3o6SrwY8jB we/BI/GuIopcqM4ZdQhJSV9PMlmmknmkmlYtJIxZmPUknJNQ0UVR3HS2OZ/Cd7G44jcOhPOOmR/n 1rm8dq7fw3BHcaBLAzcSu4bBGRkAcflVK/8ACbxoXs5TIf7j4Bx7H/8AVUpnn08VThVlTm7anKUV IysjFWBDA4II5FR1R6AUUUUAOxxXsnwo8EBUTxJqUIJYf6FG46c/60j1/u/n6Gsf4aeADrU6axq0 B/s2PmGN+PPcH07oOc+p49a6/wCI/j+LQbSTRtKkB1KRdrvGeLZT/wCzEdB26+mfnsyxlTEVPqOF 1k/ifZdTso0lBe0qbdDm/iv43+2Tt4f06b/R4W/0t0biRx/ACDyB39x7V5PQTmivZweEp4WiqVPp +L7nPVqOpLmYlFFFdBmFFFFABRRRQAUUUUATwytDMkqHDIwYH3FehQSrcW8cq/dkUMPbNecDPaux 8M3Pm6eYCfmibj6Hp+ua5cVG8ebsfRcPYjkrSpPaS/FGrc28d1bvDIMhxj6e9cDd272lzJC/VGI+ vvXolcx4nsm3rdquVxhiB09M1lhp2lyvqeln2EVSkq0VrH8v+AcxRRRXefFhRRRQAUUUUAFFFFAB RRQOtAHZ+GIgmmNJxl3P5AD/AOvWX4om336Rr/AgB+pOf8K6HSIvJ0m2X1Td+fP9a5DWpPN1a5bO cPt/Lj+lclL3qzZ9TmP7nLKdPvb8rv8AEzqKKK6z5YK+3fAv/JPfDX/YKtf/AEUtfEVfbvgX/knv hr/sFWv/AKKWgD4y13/kYdT/AOvuX/0M1n1oa7/yMOp/9fcv/oZrPoAKKKKACiiigAqaKWSGVJYn ZJEYMrKcFSOhB9ahooA9/wDh78QovEMC6TqzouqKuFY4C3K4/wDQvUd+o9uT+I/w4OltLrWiwk2J +ae3Uf6j1ZR/c/l9OnmcUskEqSxOySIwZWU4KkdCD617x8PfiFF4hhXSdWdF1RVwrnAW5XH/AKF6 jv1Ht83isLVy6q8XhFeD+KP9f0vQ7adSNaPJU36M8CqSOV4ZFkicq6nIYdRXtvif4a6ZbNLqWn2O 6EZeSCMuSvrtUdR7Afp04ePUPDtuxRfJRhwcwNn6fdzXs4THUcVT56bv+a9TysTWnRk4OnJ/LRmd Hc2PiBEivVaK8VcCZRwfr/8AX/MZqheeGtQtSSsfnx54aPkn8OtdemtaY2At3EPTJxUyX1mzYW6g c9cLKp/rXRc8lYutTfuQaj2ev3djzN1ZDhgQR1BFMrvtSs7DWJWt0eNblU3rIuDxnGDjrWWng2Qo TJdoG7BULD8+P5U7nowx9JxvU919jlu1B6Vau7KexuDDOhVh37Eeorfj/s3R7C3e5tRcXFwnmfMA QAeg56flRc3nWUUnFXvtY5Ydcdq7iw0HTbG2W6uWjl+UMXcjYM+g/wAay3h0zXExZBbS8/55EYR/ pj/PtTtG8xxd6Ld5BdDsVz91hzx/P8KTOXEzlUho3G2662Nf+39GtU2wOuP7scZA/kBXCyMHkZgM AknA6CiVDHIyNncpII9DUdUlY3w+GhQu4tu/cSiiimdIUUUUAFFFFABRRRQAUUUUASKzIwKsQR0I NbmleI57JwtwzzQYxgnJX3BP8qwKKVjOpRhUjyzVzsLnVPD92d81s7u3XCYb8TkfzrL8Q2VraS2z WkZjSWPdgkn+dYgPINdnqGiz6rLZsrqkKwICzHODznA/Kp2ONxhhZx958uu7ON5wea7z4e+AJvE1 yt/fK0WlRNycczsP4V9vU/gOenQ+GvhVbXrRXN+JxajkgttMn0AGQPfP0rrvGXjOw8EaXHY2McRv jHttrVRhYl6BmA6D0Hf8zXh47M51J/VcHrN7vt/wfyPXwsIzj7WekfPqM8e+N4fB+mx2OnpEdQlT EMYA226DgMV/kOnB9MV8+3FzNd3MlxcSvJNIxd3c5LE9STT76+utSvZbu8mea4lbc8jnJJ/z2qpX fl2XwwVOy1k933/4Aq1V1JX6CUUUV6BiFFFFABRRRQAUUUUAFFFFAC1o6VqLaddiQLuQ8MvqKzqX 6Ck0mrM0pVZUpqcHZo9IimSeJJI2DI4yCKWSNJYmjkUMjDBHqK4aw1a609v3bBo85KN0P+FdTYa5 a3uFJ8qT+6x6/Q968+pQlDVbH22DzbD4qKhU0l2ez9DmtW0iSwlLKrNAT8r9cex96y/TmvS2VXUq 6hlI5BGQa5vV/D6hWuLJTxy8f9V/wreliE/dkeTmWSSp3q0NV26r07nLUUpBBwaSuo+bCiiigAoo ooAWhR8w+tFTW67541xnLAY9eaTKgrySPRIkEUSRjoqhR+Fee3rl7yZz1LsT+dei15rKxaVyepPN cuF3bPqOInanSivP9COiiius+VCvt3wL/wAk98Nf9gq1/wDRS18RV9u+Bf8Aknvhr/sFWv8A6KWg D4y13/kYdT/6+5f/AEM1n1oa7/yMOp/9fcv/AKGaz6ACiiigAooooAKKKKACpopZIZUlidkkRgys pwVI6EH1qGigD2XwX8Wtxi07xGwB4VL4cemPMH/s35jvXR+LvhzpXiqH7fp7xWt/IN4nj5jnB5yw HXP94c+ua+ecGuz8IfELU/CriEk3dgfvW0jEbfdD/D/L2714GLymdKf1jAvll26P+vuOuniFJclX VHPazoepaDfNZ6lbPBMOQG6MPVT0I+lZoJ9TX0xa6h4X+IukNAVS5QfM8Eo2zQn14OR9QfavL/F3 wp1DR2e70gSX1lkny1GZYh7gfeHuPyrXB5zCcvYYlclTz2ZNTDNLmhqjz61uprSdZoXKuhyCK3o/ GF0qAPbxMR3GRXNsrKxVgQRwQe1Nr2bI4auHpVf4kbnSP4kivFCX9jHKA2QVYqR/n6iszVNROpXQ lEYjREEaKOyj1/Os6kosEKFOD91EquyOGUkMDkEHkV12nTJrPkzbguoWxBb/AKaLnn+v+TXHdun4 1Nb3UtpOs0DlJF6EUmhV6PtI6aNbF7xAETW7oR/dJB/EgE/rmsqpp5pLiZ5pG3O5yxPc1FTRpTi4 wUX0Q2iiimUFFFFABRRRQAUUUUAFFFFAC0UD2Feg+FPhfq2vNHc34ewsCclpFxI4/wBlT6+p4781 jXxFLDw56srIuEJTdoo4zTtOvdVu0tLG1luJ36Rxrk/U+g9zwK938E+AX0W2SbWZ/tVxsGy24McP t/tH9Pr1rUji8L/DnRuWitEbPzOd005H6t26cD2rybxh8UNQ8RK1nYK1jpx+8qt+8l/3iOg9h+JN fPTxOLzR+zwy5KfWT6/15fedLo0aavVXM+x23jT4rW2leZYaEY7m85V7jO6KI/7OOHPX2B9eRXiV 7e3Oo3ct3dzPNcSHc8jnJY1WzQK9rA5fRwcOWmter6swq1ZVHqJRRRXaZBRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABSgkd6SigDotH11rcrb3OWiz8rHqv8AiK6sEMAQQQehHevNOc12HhzUftFt9mkb 95GPlz3X/wCt/hXHiKStzI+oyTMpOSw9V+n+RmeI7D7Pe+ei4jl547N3/wAfzrCxnvXoGqWgvdPl ixlwNyf7w/zj8a4A5Bx6GtaE+aNn0PPzrB/V8RzR+GWv+YyiiitzxwooooAXNaehwmbV4B2Vtx9s c1mgV0XhWINczykZ2qAPbJ/+tWdV8sGzty6l7XFQh5/lqdBqM32fTp5c4whGfc8D9TXnvJNdb4ou RHZxwA/NI24/Qf8A18flXJDI6Vlho2hfuejxBW58Sqa+yvxeo2iiiuk8EK+3fAv/ACT3w1/2CrX/ ANFLXxFX274F/wCSe+Gv+wVa/wDopaAPjLXf+Rh1P/r7l/8AQzWfWhrv/Iw6n/19y/8AoZrPoAKK KKACiiigAooooAKKKKACiiigC3ZX91p10l1ZzyQzxnKyI2CK9c8LfGONkS18RxlXHH2yFcg+7oOn 1X8hXjNFcmMwFDFxtVjr36r5mtOtOm/dZ9LX2geE/Hlj9qVYLgsOLq2YLKp9z/RgfpXmuv8Awe1j T8y6TKmow8nZgRyKPoThvwOT6VwOnarf6TcfaNPuprabpuicrkeh9a9J0P403sCpDrVil0BwZ4CI 3PuV+6T9NteN9SzDA/7rPnh/K/6/VHR7WlV+NWfc80vtOvdNuTb31rNbTKMmOVCrY9cGqdfStn4q 8H+Mrb7K89rKX4+zXiBWz7BuCeM/KTWTqvwd8PXrl7GS4sGP8KN5idPRuevvWtPPoQfJi6bhL8P8 yZYRtXpu6PAKMV6ff/BXWYCxsL60u1HQPuic/hyP1rl73wB4qsTibRLpv+uCiX/0AmvTo5jhK3wV F99n9zMZUKkd0cvRVm5s7m0fZcW8sLf3ZEKn9ar49q7E01dGQlFFFABRRRigBcUVNDBLcSCKGNpH PRUBJP4Vt2XgrxLflRb6Le4bBVpIjGpB6Hc2BionVpwV5yS9WUouWyOeor0nTvg1r90VN7Pa2SkD ILmRx+C8frXXaV8GNFtWD6jeXF8R/Aq+Sh57gEn06H1rza2d4Kj9u78tf+B+JrHDVJdDxC2tp7u4 SG2hkmlc4SONSzMfQAcmu60D4S69qrLJqCDTbY8ky/NIR7IOn44r1abVPB3ga2aFZLKyYdYYBulb 6gZbt1P51xGt/GtiHi0XTwD0We5OT9Qg/qfwrheZY/F6YSlyr+Z/1b8zb2NKn8crvsdlpXg7wp4M gW+dIVlj63t64JB9RnhT16DNc14m+Mlpbq9v4fh+0TdPtUykRr7qvU/jj8a8k1bXNS1y6Nxqd5Ld S9i54Ueijoo9gBWZWtDJIyn7XGTdSX4f1/ViZ4ppctNWRf1HVLzV7x7u/uZLid+rOcn6ew9hVCii veUVFJRVkcjd9WJRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAC1d0y7NnexS54B 5+h4P6VTxmjHek1dWZpTnKnNTjutT0sEMAQQQehHevPtQQR6jcIM4WQgZ+tdpo8pl0i2ds527efY kf0rjdV/5Ct1/wBdW/ma5MOrSkj6XPZqrh6VRddfvRRooorsPlgooooAcecV2nhy38nTPMIIaRi3 Pp0FcailpAo5JOBXeXLrpmkEjAMUYVfdug/WufEO6UV1PeyOEYzniJ7QRyuvXX2rU32nKx/IMe3X 9c1l5xSlixJPem1vGKikkePXrSrVZVJbt3EooopmIV9u+Bf+Se+Gv+wVa/8Aopa+Iq+3fAv/ACT3 w1/2CrX/ANFLQB8Za7/yMOp/9fcv/oZrPrQ13/kYdT/6+5f/AEM1n0AFFFFABRRRQAUUUUAFFFFA BRRRQAUUUUAFFFFAC963dM8W6/pCotlq11HGmNsfmbkGPRWyP0rC6UZqZ04VFyzSa89RqTTuj0rT fjNr1sgS+trW8UfxFTG56d149e3eupsvjZo8ij7bpl5A3H+qKyj35JX+VeGUV5tbJMDV1cLemhtH E1I9T6Ptvih4PvlMcuoGLeShSeB8EY7nBGPqal+1/D2+And/DkhYYzMIQ3HqG5r5spK4/wDV6jF3 pVJR+Zr9ck/iSZ9Jnwv4DZiTZaVz6SKP60N8MvBszGT+x1O/5vluJQOfTDY/KvmzNLn6/nS/sTEL 4cTJff8A5h9ah1gv6+R9JN4Q8C2x8l7DTUZPlKyS/MPrls/nThF8P9PIQjw7FJFyN5h3r3B55zXz Vn3oyaayKo/jxEn/AF6sPrSW0EfSMvxG8F6ZEY4tSiwBuEdtAxB/JcZ+prIu/jR4fh3LbWl9cMCM EoqKfxLZ/SvBacPxqocO4Razcper/wAhPGVHtZHqGpfGrVpwVsNPtLVT3cmVh06Hgevbv7VyWpeO vEuqlhc6xchD1SJvLUj0wuM/jXNdaK9Khl2Eofw6a/N/e9TGVepLdiEmiiiuwyCiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKVfvD60AjvNEXy9Gt1YjhSc/Uk1xd zL5t1NIerOTn6mvQI44mtFiQhotmwFW6jGOoqidA0wn/AI9R/wB9t/jXDTqxjJt9T7LHZdVxFGlT ptWiuvojhaK7r+wNM/59R/323+NH9gaZ/wA+o/77b/GtvrUOzPK/1fxH80fv/wCAcN9BWja6LeXg DJEVQ/xv8o/+v+FdVFBpNidy/ZkI7lwSPpk5pJdd06If8fG8+iqT/wDWqXXk/gibUsnw9PXE1V6J /qUrDw4ba4jnmn3MpDBUXjI6c/8A1qg8T3isY7RGztOXx2PYfzqW58UxBSLeFyxHDSYAH4DOa5eW V5pDI7FixySfWnThOUuaoTjsXhaNB4fCfa3ev6kVFFFdJ88FFFFABX274F/5J74a/wCwVa/+ilr4 ir7d8C/8k98Nf9gq1/8ARS0AfGWu/wDIw6n/ANfcv/oZrPrQ13/kYdT/AOvuX/0M1n0AFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUALub+8fzo3N/eP50l FFh3Yu5v7x/Ojc394/nSUUBdi5PqaSiigQUUUUAFFFFABRRRQAV9u+Bf+Se+Gv8AsFWv/opa+Iq+ 3fAv/JPfDX/YKtf/AEUtAHxnrv8AyMOp/wDX3L/6Gaz6+oZvAvhieaSaXRrZpJGLMxBySTknrTP+ EA8J/wDQCtPyP+NfM/604b+WX4f5nd9Rn3R8w0V9Pf8ACAeE/wDoBWn5H/Gj/hAPCf8A0ArT8j/j R/rThv5Zfh/mH1GfdHzDRX09/wAIB4T/AOgFafkf8aP+EA8J/wDQCtPyP+NH+tOG/ll+H+YfUZ90 fMNFfT3/AAgHhP8A6AVr+R/xo/4QDwn/ANAK0/I/40f604b+WX4f5h9Rn3R8w0V9Pf8ACAeE/wDo BWn5H/Gj/hAPCf8A0ArT8j/jR/rThv5Zfh/mH1GfdHzDRX09/wAIB4T/AOgFafkf8aP+EA8J/wDQ CtPyP+NH+tOG/ll+H+YfUZ90fMNFfT3/AAgHhP8A6AVr+R/xo/4QDwn/ANAK0/I/40f604b+WX4f 5h9Rn3R8w0V9Pf8ACAeE/wDoBWn5H/Gj/hAPCf8A0ArT8j/jR/rThv5Zfh/mH1GfdHzDRX09/wAI B4T/AOgFafkf8aP+EA8J/wDQCtPyP+NH+tOG/ll+H+YfUZ90fMNFfT3/AAgHhP8A6AVp+R/xo/4Q Dwn/ANAK0/I/40f604b+WX4f5h9Rn3R8w0V9Pf8ACAeE/wDoBWn5H/Gj/hAPCf8A0ArT8j/jR/rT hv5Zfh/mH1GfdHzDRX09/wAIB4T/AOgFafkf8aP+EA8J/wDQCtPyP+NH+tOG/ll+H+YfUZ90fMNF fT3/AAgHhP8A6AVp+R/xo/4QDwn/ANAK0/I/40f604b+WX4f5h9Rn3R8w0V9Pf8ACAeE/wDoBWn5 H/Gj/hAPCf8A0ArT8j/jR/rThv5Zfh/mH1GfdHzDRX09/wAIB4T/AOgFafkf8aP+EA8J/wDQCtPy P+NH+tOG/ll+H+YfUZ90fMNFfT3/AAgHhP8A6AVp+R/xo/4QDwn/ANAK0/I/40f604b+WX4f5h9R n3R8w0V9Pf8ACAeE/wDoBWn5H/Gj/hAPCf8A0ArT8j/jR/rThv5Zfh/mH1GfdHzDRX09/wAIB4T/ AOgFafkf8aP+EA8J/wDQCtPyP+NH+tOG/ll+H+YfUZ90fMNFfT3/AAgHhP8A6AVp+R/xo/4QDwn/ ANAK0/I/40f604b+WX4f5h9Rn3R8w0V9Pf8ACAeE/wDoBWn5H/Gj/hAPCf8A0ArT8j/jR/rThv5Z fh/mH1GfdHzDRX09/wAIB4T/AOgFafkf8aP+EA8J/wDQCtPyP+NH+tOG/ll+H+YfUZ90fMNFfT3/ AAgHhP8A6AVp+R/xo/4QDwn/ANAK0/I/40f604b+WX4f5h9Rn3R8w0V9Pf8ACAeE/wDoBWn5H/Gj /hAPCf8A0ArT8j/jR/rThv5Zfh/mH1GfdHzDRX09/wAIB4T/AOgFafkf8aP+EA8J/wDQCtPyP+NH +tOG/ll+H+YfUZ90fMNFfT3/AAgHhP8A6AVp+R/xo/4QDwn/ANAK0/I/40f604b+WX4f5h9Rn3R8 w0V9Pf8ACAeE/wDoBWn5H/Gj/hAPCf8A0ArT8j/jR/rThv5Zfh/mH1GfdHzDRX09/wAIB4T/AOgF afkf8aP+EA8J/wDQCtPyP+NH+tOG/ll+H+YfUZ90fMNFfT3/AAgHhP8A6AVp+R/xo/4QDwn/ANAK 0/I/40f604b+WX4f5h9Rn3R8w0V9Pf8ACAeE/wDoBWn5H/Gj/hAPCf8A0ArT8j/jR/rThv5Zfh/m H1GfdHzDRX09/wAIB4T/AOgFafkf8aP+EA8J/wDQCtPyP+NH+tOG/ll+H+YfUZ90fMNFfT3/AAgH hP8A6AVp+R/xo/4QDwn/ANAK0/I/40f604b+WX4f5h9Rn3R8w0V9Pf8ACAeE/wDoBWn5H/Gj/hAP Cf8A0ArT8j/jR/rThv5Zfh/mH1GfdHzDRX09/wAIB4T/AOgFafkf8aP+EA8J/wDQCtPyP+NH+tOG /ll+H+YfUZ90fMNFfT3/AAgHhP8A6AVp+R/xo/4QDwn/ANAK0/I/40f604b+WX4f5h9Rn3R8xc19 t+Bf+SfeGv8AsFWv/opa4H/hAPCeP+QHafkf8a9L0uCK00iytreJUghgSONR/CoUAD8q7MLnlHEX 5IvQxq4aULXZzFRyzxQKpldUDOEXJ6sTgD86krD8UTC30+3mKs4ju4nKoMk4bOB71+fYel7WooPq e5CHNJR7l6TWNPjETPdxKJmKx5P3iDg4/HirgkQyGMOu9QGK55AOcHH4H8jXDaVe20N5pj3UbbZo p1VTHuKsZiRkduhrWhumHjy5iIJRrcRg+jKFbjnph/zrvq4FRbSvom/Wzsbzw9m0uib+52NabW9N gginlvI0imBMbE8MB1x+Yqx9ttmn8kTJ5hcx7c87gu4j8ua5q0gtpvDWiNNHGdsse0uOmSePxOPr VWC8VfFot/LlLJezSbguVI8nGB78fyprA05KSje6v+GwewTva+l/wOymnjtommmdY415ZmPAqrc6 zp9ocXF3EnzlOW/iABI/UfnXHx+IL3WtK1i3uYcMibkCRkY5A2n39Px9KuzxRSm4EiK4/tqMYYZ6 hAf0pxy5Qdqu/l8v8x/VuR2n+H9eZ1C39q7FVmUkMqkD1YZA/EUlzqFpaK5uJ0iCBS249AxIH5kH 8qwJnEetzIgA3ajCp+nkZH8qs6uiuuthlDD+zkOCM8gykH86z+qQUo3vZpP77f5mbpxTV+tvxNOP VrCWESLdRmMo0obPGxTgn8DTP7c0wW6XJvYhE77FctwW9K5vWEhjsCiIFYaWdoUYAG5c/rin6pda dcx2F2IJU02SOaOVkhwULKoBxj2ODzWqwNOVnrZt/h/maKhHzs7nY9Kz21vTVFwTeRfuP9bg/c5x z+PFY134juYfF0el+WPszbUyEO7LY568j/E9cVQt7i3uPDV3axREzw3I80+X94eeD178Gs6eAdlK ps7bdm92KOGejl1t9zOuXUrMxRSi4jKSozo277yr94/h3qX7VB50cXnx+ZIu5E3jLD1A71xF02Ul ACqqrqKqqjAAAHatXR7C3utXurqaPfNbiERMSfk/dDp+ZqquBhTg5tvr+dkKVCKV7/1ex0M11Bbx SySSqqRffYn7vQ8/mKit9TsrlY2huI3Em7Zg9dvX8sisPQrhb/VvEFvIvmRicApJyD1U8enyj9Ko 3caRaPpexFUHSp2OBjkxpk0oYKDn7OTd9PxVwVFc3K9/+Bc6mHVLKcQtDcxuszFUIP3iOoqeCeO6 gSeBw8bjKsOhFcHeXC2WpwtEv7qK7iIUjHBhTJ+uKX/hJLnSNO0S3gjUxvEHkLKTuGSMD+f5VpPK 7pOn17+jf+Rq8G2k49f+CzvfMTzfK3r5mN2zPOPXFM+2W2+VPPj3RLukG4fIPU+nSsG4uyPGlgsZ +VoGSTPGNwZgMdc/J/Ksw/ZV8K3xwv2yZZpHYj5nUSFck9+g/wAmsoYG6V3vb8W/8jJYe9r9bfjf /I7Bby2byCs8bCfIiKsDvwCTjHXgGk+32na4iP7wRcODhz0U+9chazI7WtxakJA1zcvBhduF8k9s eoJqe3023tdD0qW3h2y3E1s0rDJLHIOf1NW8BCLs29f83v6W+8boKO7/AK1OnXULRzhLiNvkZ/lb PyqcMfwPFQ2+s6bdY8m7ik+cJwf4jkgfofyNYHh8K2oWoPINvccH/rvUdvBFCtv5caIP7ZkX5VA4 AcAfhR9RpJuLbuv+D/kDoxTauzqvttmRD/pEOZv9WN4+f1x602PUbOW+ezjnja4jGWjB5HT/ABFc XHJbrp+lxSLunmtVSEbNx3eYD+HStyyv7SG71dVhJuoGklJEf3hgdG/LipqYKME7Xe/52uEsOop2 u9/zsbt1dQWdu09zKsUS9WY4AqCPVLKWMtHcxsuwSZB/hJIB/MEVyEHiZ7/QZp9Rj3CG6iLFE4K+ ZuwPoBjH0yeag8RXsS6kfs6bYLjTSgBUrj5mYccYOVrSlll3yTvfXXppb/MuOEfNyPf8DvBd2xO3 z48+Z5WNw+/jO3645xTE1CzdIXW5ixP/AKrLgGT6DvXObg/i/wCwbdqrcG7+uIVUfqT+RrHNxEE0 63UsZWtLfyAF53ebl8Ht92iGXRlbV7J/fclYa9tfP77ncnU7EGcG5jzB/rfm+59ak+1weeIPNXzS +wJnndt3Y/755rjL6AiyneKJR5kN4oCphiRcLwfzGB9aqy6t5hsdRY7R9vQyZPTEUYb096pZZGSv F9181/TKjhVJXj5/edxcapY2wlM9xHGImCPuP3SRkD8qcmoWki7knRgPLPX+/wDc/PtXCrfRiS5u 7lD5f9rKzLtzxsYDjvxirt3erH4j8lFYQXf2TYdpUZWRGAxj0J4pPLYpqOt7X8ulweFtp/XS51lr qdnezSRW1wkkkf31X+HtTry/tNPRHu544lc7VLnGTWLJLHpEWvXdrAhmjkB2qmf+WaHJA7ZLEn6n tXPya9/aOnWN1qCbtkssTYj4cmIgcdDyazp5eqkuZX5fx2uTDDc7vHb8drnd/brTA/fx4JVQd3Ut 93HrntUEWs6bNFNJFeROkPMhVshR61zMa7bKzVgQRJYgg9uBWdBJbHRtSghULJBBIj4XH/LUlee/ BrSOXQcW7vew44aLW73R6E9xFFLHEzqJJMlFzy2OuPzFJDcQ3MfmQyxyJnG5GDDPpkVgeJiBMnr9 hu9pz0OFrU0ayt7HTIktoxGsirIwBJyxUAnn6CuKeHhGhGpfV/5mMoRUVLqye31C1upJo4J0keE4 kCnO089fyNJcahZ2tqt1PcRpA+Nr5+Vs8jBrmtMeys7LUAscsN7Z27pIpGCygswYHv8AXNVYryGL w1o5vY1ZLe9MUildw4DgEDv2/Gun6jFydr2v83pfT1NPq6vpe1zql1jTmkhQXcReYbo1zyw9f0NL a6xp94SLe7jkIYLwe5zgfofyrHt7qyh8WXEDRczQwmAiPhcBs9vl6ioJY0sNEvbtLdVa3v8AzdkI C7lWQcHH+yTS+qU7qOt3a23X/IPYx211tb5nVRSpNGJI2DIehHeqy6rYvfGxW5jN0CR5WeeBn+Vc nea3deHbfRrGKMbTCrzFlJJzwVH459+laV9HBHdavdxRxrcjTg6Nsw2T5mTj8Fz+FEcBZ+9s72++ 2oOhy6vZ7f8ABN+O8tpYGnjuInhXJaVXBUY65PSknvba2fbNOiN5bSYJ52r1NcbBOsnhzV3sywgk 8qKLAKgsURG4+vWqWsagxi0u4PAk06RHHQZKFff+LH6VpDLVKdr9WvPa5UcI5Stf+rXO8/tSx+0e R9oj83y9+wHnbjOfyqIa3prW32gXkPkh9hfdwG9K5WeS3hnuhKjRXX2bz7WXb/rALfawz7cnHtVa 0a2u5xNCmIWkYKpjwCRbEMf++hVRy2ny8zva1xrDRavrsd6bm385YfOTzCu4LuG4j1A64qC21fT7 1pFt7qKUxjc+0/dHrmuMs5I21Swi4Ny8Vm0bFc4UKS/Pbitq2+z2lh4gnKIu2aTJUAEjy1OPzJ/O s6uBjT0u29LfNkSw8Y6a30Nq71SxsEje5uY41l+4WP3vp+YpZNTso45JHuUVI9u9i3C7sbc/XIrm 0CXHhfR1mRXaO7iiYMAcbZNhH5D8qklEC+IZllRXja+jQoVyObcgcdO9KOCpu6bd1e/nZoXsY6p3 uv8ANHR/bbbLDz0yuwEA/wB84X8z0qdmCqWYgKOST2rzlLuWK6hjjVsyWdnt453K6Y4/OtU+JJ59 f1DS5EAg8t0j+XkFVYkn6/0Hrmqq5XKL913W79NCpYSS29fyOqF/aGEy/aIxGEWQsWAARs4Y+xwa jm1WwgaBZbqFTP8A6r5vvfSuTiMcOlTy3AAgFtp7OSM5UPzwPoaztRurSOzhlKFUmguPs42YK7py ykf3flq45ZBytd72/C44YXmfXe34XPR96eZ5e5d+N23POPXFQQX9rdFBBPHKZELrtbOVBwT+fFYT 3Tjx7EgyUNr5Jz2Y7nyOfRKx/A9wZb6OFusFtKuD6F0YH9TWCwCVNzb2Sf33/wAkL6t7jm3sk/vO 0/tOz+3mxFxH9qHPl5+bpn+XNSR3dvLaC6SZDbld/mE4Xb3Oa43ULhV8V3McSE3SXCTbgvRBDg5P pnFa0j+V4DQKBmSzjiA93UL/ADaipgoRULN+9y/iKVC3Lbrb8Tcmu7e2YLNMiEoz/McfKuNx/DIp q31q7ELMhIZUwD0LDIH4g1wWr6i0sGl3AY7G0+VXAPALKUPr/Fj9KcLya28TC3VHKzy2mGA4G1F3 fo3P4VvHK04avXX8HY0WD0vfWz/B2O4/tSyKl/tMZUKznnoqnDH8DUxuoPtItjNH55XcI9w3Y9cV 57eXQtLa3bafLktrqFiOgLO+M8eorp7OGyTxDcyzqHvZLrZC+zkAQqcZ7cMfr+FZ1cBGEea72f4O 3/DmdTDqGuvX8GdBXV2n/HlB/wBc1/lXKV1dp/x5Qf8AXNf5VeT/AG/keTjOhylZOvqWgs8D/l8h /wDQxWtRXlUans6in2O6Ls0zibK8g0e7s5tQ3QqYriNS6N97zs44Hp/nmpIre/i8TJqL/wDHm15L GEI+bldm71wSo/75FdjgNjIpfrXe8w1bUdWmnr0fY3+sat21d0/n2OKtL63m0TTbFGJuba6gE0ZQ jYfMxycY61bt4JRr6uY22rqMpJI6AwDBrqFjRN2xFXcdxwMZPrTqUswS5lGO9+vf5CdfV2W9/wAT n9R0S2stF1E6dbCOaSMt+7zk4wcD8uAKoRS/bdP+1xJ+6k1WJ0bGCV3IMn8ePwrrzyMGgAAYxWdP HSjG0ld3ve/p/kSqzt72ruchfuINWvbuQ7Yre+gllbBO1fJ25wOerCrtxOmoW+rTWzb0l01PLOCN 2fN7GugZFdCrqGU9QRkGnDgVbxyaXu6qy36K3l5DlVUraaq34HF6zlosKCT/AGSx49mSrGr+IIJ9 NAs2820mimgZ1ibiTYNi9OM59K6yjrTWOh7vNC/Lfr3+Q/bLTmW3mUX0ixk1Iag1uhuFGN+OvTB+ oxXLpfQP4autOi3PewTGWSEIdwAnyevB4x3rtqAoGaypYtwXv3dmmte36ChWt8WtrW17HAXUhXTG vTFIIpJLyMZQ5HmD5CR2yQB+NaVnfvp+tSWRhk867MLAFTxGIgGb81Irre1HetpZippxcNNevndF fWE1Zx79fO5xfhy3vrPV7eW8ZSl7au6Ko+4d4fDd/wCM/wDfWO1PuoJZtM0mOONmdtMmQAD+Ixpg fWuxxRxSeYt1Pacuv/Dr9RPENz5rann0ED6rcxkwvElw7RL5i4wwttp4+vSt7SdFsr/QNNa8tlke KL5d2eOvH610YwO1A4FKtmM6iSguW1uvqOeJlJWjpb/gnG30F63iBtSwq2cN5DGVZcM38O7PoC5/ yKz5nlFrqFk6OrWdtOsmRwC8qupH1H8q9C49KMCtIZlypJx22/r7/vKjirWvHa34HGxKSbCwRctb XFzAvPUeUxX9GWo7fVWn0SIpFIsOmm181tp3EqcSD8AB+Zrtvwox7VP9ox6w/Hzbf33JddPdfj53 ZxVhf2+mT6feXh8mCS2nVHCMQxMoYcDJ5HNTufJsTcsjGO21aSWTapJCbmBOPbdmusaNHKlkVivK kjp9KdQ8fG/Ny69dfXy8xOsm72/E4JITDa6NePvR7SKJyMclWkCsMH2at3S7yz/tLUtPd1NxLOzm MIeV2gcnp6966DtR3qKmOVRNOPfr537BOvzppr8fO5z+padp2j6MZI4lhijuYZXIGePNGc+uAT+l YPiNo9ZS4urMebGLWORW2EE4kdTgEZ45rvTyMUvbpRQx7ppNpt33v6f5BTxDi1J6u/cxI7Nl8ZSX YyFayC/U7uf0A/OuUggZX0u9XcDbW8DEr3UyMrD8mr0ajAqqWYuCd1fRL5L/ADHHENdPI4qW5ka5 uLZraZTB5+WK/KwknRlIP05pIdCaZLyxeIMGu59jOMhS0alGJx9P1rtsD0op/wBpSStBW+fUFiWl aKscTLaw6J5DS5EEN1AZJNpYZETAnp64/MVJeKuqX8N7bFnjivLZw2MBkbAzjr1I9O9dlRjij+0H dSa97a9/+AL6w73e5iWtvHc6trkU8YeJ3iDKw4I8paik06103VNFgtYVji82ViBzk+URk+/AroP6 0f0rnWLkn5Wta/la5PtXfytb8LHLapI6eIUtfIZ2mmgljO0kEITvJPsMGqDPJc6PqEYhk8yK1kR/ 3ZA/1jEcnr8ozxXcY70hUEYIyD2raGPUYqPLtbr2LVdJJW2t+ByeqXkGsyQNYP5we1u41wCCW2px g4PcVp+HtV/tO1k2IRBCEjjcggsdo3frWwqKiBUUKo6ADAFOAwTxUVMVCVL2ajttr5+hEqkXHltt tr5nFXdzcaql9DHAUvfLW2lBQgLulwuT6bSTUulQXMN1HaXpWaaPU2kZ1GFYtC7AgYHfn8a7DA7U Vp/aC5HCMbJ/hpYp1/dcUtDn0v7Wy8V3Udy/ly3KQrCChO8/MDg49cU+cH+wdbyMf6//ANBrdxzR 0rF4pXUktdOvb5f5kOps1/Vije6PYahJFJd26SNF93d/I1kaujfbNUwDzpRA9+XrpaKmji5U2r6p f53FGo1vqcLBa3S6V/ZdqWWQX0bxPjKxqUEgJ9QCD1qpLp88mmvZzqPOtrOZd2MglJEf5fwIH416 LgZzRgZzXYs0ad1Hz+Zv9bad7efzOI1S7klUafJAwlihZ4m2H5ozbODz/vnH5elXdZdrew0q4WCR 441ZWES5I3RlR+prquO4o/Cs3j17to6Lz3vuT7dXTtscLp6NaaxZXDqwdIrSB1PBAkRl/wDQgtXb y3uJdM1e1iQ+bPqCoOOACIzk+2K63AoonmPNPn5ddPwdweIbkpW7fgcdbQXMGntbXBV5odViZ3QY BDMrBsds7ulLfzPa6td3Qt3mSG9iZ1RckAwFc/gWFdhxRgULMPebcd9/na/5C9vq21ucGbNjb2Ny IGaS2ezaQAHO0LjGPqRXUPoVk1xNdpCi3UiFfMPYkEZ/XmtSlNRWx86lrafPp2FOvJ7aHDWpS/0m 4tpIZUCJZWkoYFTuWUhh/wCPD8xUN3uOkW27zJJTZzWYCxljvSRQBxnqAevp7131FbLNLSvy9b7+ VuxaxFunW+5xtxa3q+JZdWHy2q3ccZUr8xG0JuBxnHzHj3PpSeGLF7bV7acrjzdOIbjoyuoOfwxX Z4BGKBgYqHmMnTcOXpb5W0E8S3Hlt0t8kZNgqNq+tAoCTJGGJ/iHlLxj8/zrEe5Op+H7PS7Bz9ri eGKYGM4jKgk5yMHBQ/lXY01I1jBKqFycnA7+tZ08Yovma1VreqViI1Unfrpb5HnjaXNLZSWMiKZL e1nUMvRmWVH4444YfnWp9jeTUbO5CZMN4it1yA0Efb/gIrsaK3eaSfTv+O5q8VJ9O/47nn1xbNd6 BcRpGS6QySqe3E7E4/AH8xWyJivjH7KUk3POLhSR8uwQFMj/AIFx+FdRjjGKMc5xUyzC6acdHfr3 t/kKWI5rpre/42/yCurtP+PKD/rmv8q5SurtP+PKD/rmv8q2yf7fyPJxnQpf2Jbf35v++h/hR/Yl t/fm/wC+h/hRRXoewpfyr7kRzS7h/Ylt/fm/76H+FH9iW39+b/vof4UUUewpfyr7kHNLuH9iW39+ b/vof4Uf2Jbf35v++h/hRRR7Cl/KvuQc0u4f2Jbf35v++h/hR/Ylt/fm/wC+h/hRRR7Cl/KvuQc0 u4f2Jbf35v8Avof4Uf2Jbf35v++h/hRRR7Cl/KvuQc0u4f2Jbf35v++h/hR/Ylt/fm/76H+FFFHs KX8q+5BzS7h/Ylt/fm/76H+FH9iW39+b/vof4UUUewpfyr7kHNLuH9iW39+b/vof4Uf2Jbf35v8A vof4UUUewpfyr7kHNLuH9iW39+b/AL6H+FH9iW39+b/vof4UUUewpfyr7kHNLuH9iW39+b/vof4U f2Jbf35v++h/hRRR7Cl/KvuQc0u4f2Jbf35v++h/hR/Ylt/fm/76H+FFFHsKX8q+5BzS7h/Ylt/f m/76H+FH9iW39+b/AL6H+FFFHsKX8q+5BzS7h/Ylt/fm/wC+h/hR/Ylt/fm/76H+FFFHsKX8q+5B zS7h/Ylt/fm/76H+FH9iW39+b/vof4UUUewpfyr7kHNLuH9iW39+b/vof4Uf2Jbf35v++h/hRRR7 Cl/KvuQc0u4f2Jbf35v++h/hR/Ylt/fm/wC+h/hRRR7Cl/KvuQc0u4f2Jbf35v8Avof4Uf2Jbf35 v++h/hRRR7Cl/KvuQc0u4f2Jbf35v++h/hR/Ylt/fm/76H+FFFHsKX8q+5BzS7h/Ylt/fm/76H+F H9iW39+b/vof4UUUewpfyr7kHNLuH9iW39+b/vof4Uf2Jbf35v8Avof4UUUewpfyr7kHNLuH9iW3 9+b/AL6H+FH9iW39+b/vof4UUUewpfyr7kHNLuH9iW39+b/vof4Uf2Jbf35v++h/hRRR7Cl/KvuQ c0u4f2Jbf35v++h/hR/Ylt/fm/76H+FFFHsKX8q+5BzS7h/Ylt/fm/76H+FH9iW39+b/AL6H+FFF HsKX8q+5BzS7h/Ylt/fm/wC+h/hR/Ylt/fm/76H+FFFHsKX8q+5BzS7h/Ylt/fm/76H+FH9iW39+ b/vof4UUUewpfyr7kHNLuH9iW39+b/vof4Uf2Jbf35v++h/hRRR7Cl/KvuQc0u4f2Jbf35v++h/h R/Ylt/fm/wC+h/hRRR7Cl/KvuQc0u4f2Jbf35v8Avof4Uf2Jbf35v++h/hRRR7Cl/KvuQc0u4f2J bf35v++h/hR/Ylt/fm/76H+FFFHsKX8q+5BzS7h/Ylt/fm/76H+FH9iW39+b/vof4UUUewpfyr7g 5pdw/sS2/vzf99D/AAo/sS2/vzf99D/Ciij2FL+Vfcg5pdw/sS2/vzf99D/Cj+xLb+/N/wB9D/Ci ij2FL+Vfcg5pdw/sS2/vzf8AfQ/wo/sS2/vzf99D/Ciil7Cl/KvuQc0u4g0S2P8AHN/30P8ACtOK FY4URc4VQBk0UV0YGnBJ2RjWbdj/2Q== ------_=_NextPart_000_01C27B59.EF7EA85A--